Category:Bethe-Salpeter equations: Difference between revisions
No edit summary |
(→Theory) |
||
Line 1: | Line 1: | ||
== Theory == | == Theory == | ||
The formalism of the Bethe-Salpeter equation (BSE) allows us to include the electron-hole interaction, i.e., the excitonic effects, in the calculation of the dielectric function. In the BSE, the excitation energies correspond to the eigenvalues <math>\omega_\lambda</math> of the following linear problem | |||
::<math> | |||
\left(\begin{array}{cc} | |||
\mathbf{A} & \mathbf{B} \\ | |||
\mathbf{B}^* & \mathbf{A}^* | |||
\end{array}\right)\left(\begin{array}{l} | |||
\mathbf{X}_\lambda \\ | |||
\mathbf{Y}_\lambda | |||
\end{array}\right)=\omega_\lambda\left(\begin{array}{cc} | |||
\mathbf{1} & \mathbf{0} \\ | |||
\mathbf{0} & -\mathbf{1} | |||
\end{array}\right)\left(\begin{array}{l} | |||
\mathbf{X}_\lambda \\ | |||
\mathbf{Y}_\lambda | |||
\end{array}\right)~. | |||
</math> | |||
The matrices <math>A</math> and <math>A^*</math> describe the resonant and anti-resonant transitions between the occupied <math>v,v'</math> and unoccupied <math>c,c'</math> states | |||
::<math> | |||
A_{vc}^{v'c'} = (\varepsilon_v-\varepsilon_c)\delta_{vv'}\delta_{cc'} + \langle cv'|V|vc'\rangle - \langle cv'|W|c'v\rangle. | |||
</math> | |||
The energies and orbitals of these states are usually obtained in a <math>G_0W_0</math> calculation, but DFT and Hybrid functional calculations can be used as well. | |||
The electron-electron interaction and electron-hole interaction are described via the bare Coulomb <math>V</math> and the screened potential <math>W</math>. | |||
The coupling between resonant and anti-resonant terms is described via terms <math>B</math> and <math>B^*</math> | |||
::<math> | |||
B_{vc}^{v'c'} = \langle vv'|V|cc'\rangle - \langle vv'|W|c'c\rangle. | |||
</math> | |||
Due to the presence of this coupling, the Bethe-Salpeter Hamiltonian is non-Hermitian. | |||
A common approximation to the BSE is the Tamm-Dancoff approximation (TDA), which neglects the coupling between resonant and anti-resonant terms, i.e., <math>B</math> and <math>B^*</math>. | |||
Hence, the TDA reduces the BSE to a Hermitian problem | |||
::<math> | |||
AX_\lambda=\omega_\lambda X_\lambda~. | |||
</math> | |||
In reciprocal space, the matrix <math>A</math> is written as | |||
::<math> | |||
A_{vc\mathbf{k}}^{v'c'\mathbf{k}'} = (\varepsilon_v-\varepsilon_c)\delta_{vv'}\delta_{cc'}\delta_{\mathbf{kk}'}+ | |||
\frac{2}{\Omega}\sum_{\mathbf{G}\neq0}\bar{V}_\mathbf{G}(\mathbf{q})\langle c\mathbf{k}|e^{i\mathbf{Gr}}|v\mathbf{k}\rangle\langle v'\mathbf{k}'|e^{-i\mathbf{Gr}}|c'\mathbf{k}'\rangle | |||
-\frac{2}{\Omega}\sum_{\mathbf{G,G}'}W_{\mathbf{G,G}'}(\mathbf{q},\omega)\delta_{\mathbf{q,k-k}'} | |||
\langle c\mathbf{k}|e^{i(\mathbf{q+G})}|c'\mathbf{k}'\rangle | |||
\langle v'\mathbf{k}'|e^{-i(\mathbf{q+G})}|v\mathbf{k}\rangle, | |||
</math> | |||
where <math>\Omega</math> is the cell volume, <math>\bar{V}</math> is the bare Coulomb potential without the long-range part | |||
::<math> | |||
\bar{V}_{\mathbf{G}}(\mathbf{q})=\begin{cases} | |||
0 & \text { if } G=0 \\ | |||
V_{\mathbf{G}}(\mathbf{q})=\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^2} & \text { else } | |||
\end{cases}~, | |||
</math> | |||
and the screened Coulomb potential | |||
<math> | |||
W_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)=\frac{4 \pi \epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega)}{|\mathbf{q}+\mathbf{G}|\left|\mathbf{q}+\mathbf{G}^{\prime}\right|}. | |||
</math> | |||
Here, the dielectric function <math>\epsilon_\mathbf{G,G'}(\mathbf{q})</math> describes the screening in <math>W</math> within the random-phase approximation (RPA) | |||
::<math> | |||
\epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega)=\delta_{\mathbf{G}, \mathbf{G}^{\prime}}+\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^2} \chi_{\mathbf{G}, \mathbf{G}^{\prime}}^{\mathrm{RPA}}(\mathbf{q}, \omega). | |||
</math> | |||
Although the dielectric function is frequency-dependent, the static approximation <math>W_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega=0)</math> is considered a standard for practical BSE calculations. | |||
The macroscopic dielectric which account for the excitonic effects is found via eigenvalues <math>\omega_\lambda</math> and eigenvectors <math>X_\lambda</math> of the BSE | |||
::<math> | |||
\epsilon_M(\mathbf{q},\omega)= | |||
1+\lim_{\mathbf{q}\rightarrow 0}v(q)\sum_{\lambda} | |||
\left|\sum_{c,v,k}\langle c\mathbf{k}|e^{i\mathbf{qr}}|v\mathbf{k}\rangle X_\lambda^{cv\mathbf{k}}\right|^2 | |||
\times | |||
\left(\frac{1}{\omega_\lambda - \omega - i\delta} + \frac{1}{\omega_\lambda+\omega + i\delta}\right)~. | |||
</math> | |||
== How to == | == How to == |
Revision as of 10:01, 16 October 2023
Theory
The formalism of the Bethe-Salpeter equation (BSE) allows us to include the electron-hole interaction, i.e., the excitonic effects, in the calculation of the dielectric function. In the BSE, the excitation energies correspond to the eigenvalues [math]\displaystyle{ \omega_\lambda }[/math] of the following linear problem
- [math]\displaystyle{ \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{array}\right)\left(\begin{array}{l} \mathbf{X}_\lambda \\ \mathbf{Y}_\lambda \end{array}\right)=\omega_\lambda\left(\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{array}\right)\left(\begin{array}{l} \mathbf{X}_\lambda \\ \mathbf{Y}_\lambda \end{array}\right)~. }[/math]
The matrices [math]\displaystyle{ A }[/math] and [math]\displaystyle{ A^* }[/math] describe the resonant and anti-resonant transitions between the occupied [math]\displaystyle{ v,v' }[/math] and unoccupied [math]\displaystyle{ c,c' }[/math] states
- [math]\displaystyle{ A_{vc}^{v'c'} = (\varepsilon_v-\varepsilon_c)\delta_{vv'}\delta_{cc'} + \langle cv'|V|vc'\rangle - \langle cv'|W|c'v\rangle. }[/math]
The energies and orbitals of these states are usually obtained in a [math]\displaystyle{ G_0W_0 }[/math] calculation, but DFT and Hybrid functional calculations can be used as well. The electron-electron interaction and electron-hole interaction are described via the bare Coulomb [math]\displaystyle{ V }[/math] and the screened potential [math]\displaystyle{ W }[/math].
The coupling between resonant and anti-resonant terms is described via terms [math]\displaystyle{ B }[/math] and [math]\displaystyle{ B^* }[/math]
- [math]\displaystyle{ B_{vc}^{v'c'} = \langle vv'|V|cc'\rangle - \langle vv'|W|c'c\rangle. }[/math]
Due to the presence of this coupling, the Bethe-Salpeter Hamiltonian is non-Hermitian.
A common approximation to the BSE is the Tamm-Dancoff approximation (TDA), which neglects the coupling between resonant and anti-resonant terms, i.e., [math]\displaystyle{ B }[/math] and [math]\displaystyle{ B^* }[/math]. Hence, the TDA reduces the BSE to a Hermitian problem
- [math]\displaystyle{ AX_\lambda=\omega_\lambda X_\lambda~. }[/math]
In reciprocal space, the matrix [math]\displaystyle{ A }[/math] is written as
- [math]\displaystyle{ A_{vc\mathbf{k}}^{v'c'\mathbf{k}'} = (\varepsilon_v-\varepsilon_c)\delta_{vv'}\delta_{cc'}\delta_{\mathbf{kk}'}+ \frac{2}{\Omega}\sum_{\mathbf{G}\neq0}\bar{V}_\mathbf{G}(\mathbf{q})\langle c\mathbf{k}|e^{i\mathbf{Gr}}|v\mathbf{k}\rangle\langle v'\mathbf{k}'|e^{-i\mathbf{Gr}}|c'\mathbf{k}'\rangle -\frac{2}{\Omega}\sum_{\mathbf{G,G}'}W_{\mathbf{G,G}'}(\mathbf{q},\omega)\delta_{\mathbf{q,k-k}'} \langle c\mathbf{k}|e^{i(\mathbf{q+G})}|c'\mathbf{k}'\rangle \langle v'\mathbf{k}'|e^{-i(\mathbf{q+G})}|v\mathbf{k}\rangle, }[/math]
where [math]\displaystyle{ \Omega }[/math] is the cell volume, [math]\displaystyle{ \bar{V} }[/math] is the bare Coulomb potential without the long-range part
- [math]\displaystyle{ \bar{V}_{\mathbf{G}}(\mathbf{q})=\begin{cases} 0 & \text { if } G=0 \\ V_{\mathbf{G}}(\mathbf{q})=\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^2} & \text { else } \end{cases}~, }[/math]
and the screened Coulomb potential [math]\displaystyle{ W_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)=\frac{4 \pi \epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega)}{|\mathbf{q}+\mathbf{G}|\left|\mathbf{q}+\mathbf{G}^{\prime}\right|}. }[/math]
Here, the dielectric function [math]\displaystyle{ \epsilon_\mathbf{G,G'}(\mathbf{q}) }[/math] describes the screening in [math]\displaystyle{ W }[/math] within the random-phase approximation (RPA)
- [math]\displaystyle{ \epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega)=\delta_{\mathbf{G}, \mathbf{G}^{\prime}}+\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^2} \chi_{\mathbf{G}, \mathbf{G}^{\prime}}^{\mathrm{RPA}}(\mathbf{q}, \omega). }[/math]
Although the dielectric function is frequency-dependent, the static approximation [math]\displaystyle{ W_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega=0) }[/math] is considered a standard for practical BSE calculations.
The macroscopic dielectric which account for the excitonic effects is found via eigenvalues [math]\displaystyle{ \omega_\lambda }[/math] and eigenvectors [math]\displaystyle{ X_\lambda }[/math] of the BSE
- [math]\displaystyle{ \epsilon_M(\mathbf{q},\omega)= 1+\lim_{\mathbf{q}\rightarrow 0}v(q)\sum_{\lambda} \left|\sum_{c,v,k}\langle c\mathbf{k}|e^{i\mathbf{qr}}|v\mathbf{k}\rangle X_\lambda^{cv\mathbf{k}}\right|^2 \times \left(\frac{1}{\omega_\lambda - \omega - i\delta} + \frac{1}{\omega_\lambda+\omega + i\delta}\right)~. }[/math]
How to
References
Pages in category "Bethe-Salpeter equations"
The following 28 pages are in this category, out of 28 total.