BSEPREC: Difference between revisions

From VASP Wiki
(Created page with "{{TAGDEF|BSEPREC|Low {{!}} Medium {{!}} High {{!}} Accurate | Medium}} Description: {{TAG|BSEPREC}} determines the precision for the time-evolution calculation in BSE and T...")
 
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{TAGDEF|BSEPREC|Low {{!}} Medium {{!}} High {{!}}  Accurate | Medium}}
{{TAGDEF|BSEPREC|Low {{!}} Medium {{!}} High {{!}}  Accurate | Medium}}


Description: Determines the precision of the [[:Category:Bethe-Salpeter_equations#Time_evolution|time-evolution algorithm]], where it controls the timestep and the number of steps, and the precision of the [[:Category:Bethe-Salpeter_equations#Lanczos_algorithm |Lanczos algorithms]], where it sets the convergence threshold for the dielectric function.


Description: {{TAG|BSEPREC}} determines the precision for the time-evolution calculation in BSE and TDDFT, i.e., the step size and the number of steps.
-----


----
==Time-evolution algorithm==
The timestep size in the time-evolution calculation is inversely proportional to the maximum transition energy {{TAG|OMEGAMAX}} and the number of steps is inversely proportional to the broadening {{TAG|CSHIFT}}. {{TAG|BSEPREC}} defines 
The timestep in the time-evolution calculation is inversely proportional to the maximum transition energy {{TAG|OMEGAMAX}} and the number of steps is inversely proportional to the broadening {{TAG|CSHIFT}}. Depending on the {{TAG|BSEPREC}}  stable these parameters are scaled depending on the precision tag {{TAG|BSEPREC}}.


::{| cellpadding="5" cellspacing="0" border="1"
::{| cellpadding="5" cellspacing="5" style="width: 50%; border-spacing: 5px;"
! BSEPREC !! OMEGAMAX !! CSHIFT
| style="text-align:center; background-color:#DEC4EB;"| {{TAG|BSEPREC}} || style="text-align:center; background-color:#DEC4EB;"| {{TAG|OMEGAMAX}} || style="text-align:center; background-color:#DEC4EB;"| {{TAG|CSHIFT}}
|-
|-
| Accurate (a) || ×4 || ×10  
|style="background-color:#D9F8F5;"| Accurate (a) ||style="background-color:#D9F8F5;"| <math>\times 4</math> ||style="background-color:#D9F8F5;"| <math>\times 1/10</math>
|-
|-
| High (h) || &times;3 || &times;7.5
|style="background-color:#D9F8F5;"| High (h) ||style="background-color:#D9F8F5;"| <math>\times 3</math> ||style="background-color:#D9F8F5;"| <math>\times 1/7.5</math>
|-
|-
| Medium (m) || &times;2.5 || &times;6.25
|style="background-color:#D9F8F5;"| Medium (m) ||style="background-color:#D9F8F5;"| <math>\times 2.5</math> ||style="background-color:#D9F8F5;"| <math>\times1/6.25</math>
|-
|-
| Low (l)  || &times;2 || &times;5
|style="background-color:#D9F8F5;"| Low (l)  ||style="background-color:#D9F8F5;"| <math>\times 2</math> ||style="background-color:#D9F8F5;"| <math>\times1/5</math>
|}
|}


For example, the number of steps <math>N_{\rm steps}</math> for {{TAG|BSEPREC}} = Low can be found via <math>N_{\rm steps}=\frac{{\rm OMEGAMAX}\times 2}{{\rm CSHIFT}/5}</math>
==Lanczos algorithm==
{{NB|mind|Replaces {{TAG|LANCZOSTHR}} as of version 6.5.1}}
The Lanczos algorithm stops once the imaginary part of the dielectric function computed in two consecutive iterations differs bellow a certain threshold for the root-mean-square, i.e. once after <math>n</math> iterations the value of
::<math>
\mathrm{RMS}[\epsilon_n] = \sqrt{\frac{1}{N_\omega}\sum_{i=1}^{N_\omega}\left(\Im[\epsilon_n(\omega_i)]-\Im[\epsilon_{n-1}(\omega_i)]\right)^2}
</math>
is below a certain value defined by '''BSEPREC'''.
::{| cellpadding="5" cellspacing="5" style="width: 50%; border-spacing: 5px;"
| style="text-align:center; background-color:#DEC4EB;"|  BSEPREC || style="text-align:center; background-color:#DEC4EB;"| <math>\mathrm{RMS}[\epsilon_n]</math>
|-
|style="background-color:#D9F8F5;"| Accurate (a) ||style="background-color:#D9F8F5;"| <math>10^{-5}</math>
|-
|style="background-color:#D9F8F5;"| High (h) ||style="background-color:#D9F8F5;"| <math>10^{-4}</math> 
|-
|style="background-color:#D9F8F5;"| Medium (m) ||style="background-color:#D9F8F5;"| <math>10^{-3}</math>
|-
|style="background-color:#D9F8F5;"| Low (l)  ||style="background-color:#D9F8F5;"| <math>10^{-2}</math>
|}


To prevent the algorithm from being too slow, the number of frequencies during the convergence loop is set to <math>N_\omega</math> = INT(SQRT(NOMEGA)), where {{TAG|NOMEGA}} is set in the {{TAG|INCAR}}.


== Related tag and articles ==
== Related tag and articles ==
{{TAG|IBSE}},
{{TAG|NBANDSV}},
{{TAG|NBANDSO}},
{{TAG|NBANDSO}},
[[BSE calculations]],
{{TAG|CSHIFT}},
[[timepropagation]]
{{TAG|OMEGAMAX}}
 
[[BSE calculations]]
 
[[Time-dependent density-functional theory calculations]]
 
[[Bethe-Salpeter equations]]


{{sc|NBANDSV|Examples|Examples that use this tag}}
----
----
[[Category:INCAR tag]] [[Category:Many-body perturbation theory]][[Category:Bethe-Salpeter equations]]
[[Category:INCAR tag]] [[Category:Many-body perturbation theory]][[Category:Bethe-Salpeter equations]]

Latest revision as of 08:53, 17 October 2025

BSEPREC = Low | Medium | High | Accurate
Default: BSEPREC = Medium 

Description: Determines the precision of the time-evolution algorithm, where it controls the timestep and the number of steps, and the precision of the Lanczos algorithms, where it sets the convergence threshold for the dielectric function.


Time-evolution algorithm

The timestep in the time-evolution calculation is inversely proportional to the maximum transition energy OMEGAMAX and the number of steps is inversely proportional to the broadening CSHIFT. Depending on the BSEPREC stable these parameters are scaled depending on the precision tag BSEPREC.

BSEPREC OMEGAMAX CSHIFT
Accurate (a) [math]\displaystyle{ \times 4 }[/math] [math]\displaystyle{ \times 1/10 }[/math]
High (h) [math]\displaystyle{ \times 3 }[/math] [math]\displaystyle{ \times 1/7.5 }[/math]
Medium (m) [math]\displaystyle{ \times 2.5 }[/math] [math]\displaystyle{ \times1/6.25 }[/math]
Low (l) [math]\displaystyle{ \times 2 }[/math] [math]\displaystyle{ \times1/5 }[/math]

For example, the number of steps [math]\displaystyle{ N_{\rm steps} }[/math] for BSEPREC = Low can be found via [math]\displaystyle{ N_{\rm steps}=\frac{{\rm OMEGAMAX}\times 2}{{\rm CSHIFT}/5} }[/math]

Lanczos algorithm

Mind: Replaces LANCZOSTHR as of version 6.5.1

The Lanczos algorithm stops once the imaginary part of the dielectric function computed in two consecutive iterations differs bellow a certain threshold for the root-mean-square, i.e. once after [math]\displaystyle{ n }[/math] iterations the value of

[math]\displaystyle{ \mathrm{RMS}[\epsilon_n] = \sqrt{\frac{1}{N_\omega}\sum_{i=1}^{N_\omega}\left(\Im[\epsilon_n(\omega_i)]-\Im[\epsilon_{n-1}(\omega_i)]\right)^2} }[/math]

is below a certain value defined by BSEPREC.

BSEPREC [math]\displaystyle{ \mathrm{RMS}[\epsilon_n] }[/math]
Accurate (a) [math]\displaystyle{ 10^{-5} }[/math]
High (h) [math]\displaystyle{ 10^{-4} }[/math]
Medium (m) [math]\displaystyle{ 10^{-3} }[/math]
Low (l) [math]\displaystyle{ 10^{-2} }[/math]

To prevent the algorithm from being too slow, the number of frequencies during the convergence loop is set to [math]\displaystyle{ N_\omega }[/math] = INT(SQRT(NOMEGA)), where NOMEGA is set in the INCAR.

Related tag and articles

IBSE, NBANDSV, NBANDSO, CSHIFT, OMEGAMAX

BSE calculations

Time-dependent density-functional theory calculations

Bethe-Salpeter equations