List of hybrid functionals: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
Line 34: Line 34:
  {{TAG|LHFCALC}} = .TRUE.
  {{TAG|LHFCALC}} = .TRUE.
  {{TAG|LMODELHF}} = .TRUE.
  {{TAG|LMODELHF}} = .TRUE.
  {{TAG|AEXX}} = <math>\varepsilon^{-1}</math>
  {{TAG|AEXX}} = <math>\varepsilon_{\infty}^{-1}</math>
  {{TAG|BEXX}} = 0.25
  {{TAG|BEXX}} = 0.25
  {{TAG|HFSCREEN}} = <math>\mu</math>
  {{TAG|HFSCREEN}} = <math>\mu</math>
  {{TAG|GGA}} = PE
  {{TAG|GGA}} = PE


:where <math>\varepsilon^{-1}</math> is the inverse dielectric constant and <math>\mu</math> is the range-separation parameter. See a detailed description of the DDH functionals in the documentation for the {{TAG|LMODELHF}} tag as well as [[Hybrid_functionals:_formalism#HF_exchange_at_short_range_and_long_range_%28error-function_screening%29_with_different_mixings|here]].
:where <math>\varepsilon_{\infty}^{-1}</math> is the inverse dielectric constant and <math>\mu</math> is the range-separation parameter. See a detailed description of the DDH functionals in the documentation for the {{TAG|LMODELHF}} tag as well as [[Hybrid_functionals:_formalism#HF_exchange_at_short_range_and_long_range_%28error-function_screening%29_with_different_mixings|here]].
</span>
</span>


Line 46: Line 46:
  {{TAG|LHFCALC}} = .TRUE.
  {{TAG|LHFCALC}} = .TRUE.
  {{TAG|LMODELHF}} = .TRUE.
  {{TAG|LMODELHF}} = .TRUE.
  {{TAG|AEXX}} = <math>\varepsilon^{-1}</math>
  {{TAG|AEXX}} = <math>\varepsilon_{\infty}^{-1}</math>
  {{TAG|HFSCREEN}} = <math>\mu</math>
  {{TAG|HFSCREEN}} = <math>\mu</math>
  {{TAG|GGA}} = PE
  {{TAG|GGA}} = PE


:with the default value {{TAG|BEXX}}=1 and where <math>\varepsilon^{-1}</math> is the inverse dielectric constant and <math>\mu</math> is the range-separation parameter. See a detailed description of the DDH functionals in the documentation for the {{TAG|LMODELHF}} tag as well as [[Hybrid_functionals:_formalism#HF_exchange_at_short_range_and_long_range_%28error-function_screening%29_with_different_mixings|here]].
:with the default value {{TAG|BEXX}}=1 and where <math>\varepsilon_{\infty}^{-1}</math> is the inverse dielectric constant and <math>\mu</math> is the range-separation parameter. See a detailed description of the DDH functionals in the documentation for the {{TAG|LMODELHF}} tag as well as [[Hybrid_functionals:_formalism#HF_exchange_at_short_range_and_long_range_%28error-function_screening%29_with_different_mixings|here]].
</span>
</span>



Latest revision as of 11:25, 9 February 2026

A certain number of unscreened and screened hybrid functionals are available in VASP, and furthermore if VASP is compiled with the library of exchange-correlation functionals Libxc, then most of the existing hybrid functionals can be used[1]. Examples of INCAR files are shown below. Since VASP.6.4.0 it is possible to use hybrid functionals that mix meta-GGA and Hartree-Fock exchange. Note that it is in general recommended to use the PBE POTCAR files for hybrid functionals.

Range-separated hybrid functionals

LHFCALC = .TRUE.
GGA = PE
HFSCREEN = 0.2
with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1, and ALDAC=1.

LHFCALC = .TRUE.
GGA = PE
HFSCREEN = 0.3
with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1, and ALDAC=1.

LHFCALC = .TRUE.
GGA = PS
HFSCREEN = 0.2
with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1, and ALDAC=1.

  • Dielectric-dependent hybrid (DDH) RS-DDH[7]
LHFCALC = .TRUE.
LMODELHF = .TRUE.
AEXX = [math]\displaystyle{ \varepsilon_{\infty}^{-1} }[/math]
BEXX = 0.25
HFSCREEN = [math]\displaystyle{ \mu }[/math]
GGA = PE
where [math]\displaystyle{ \varepsilon_{\infty}^{-1} }[/math] is the inverse dielectric constant and [math]\displaystyle{ \mu }[/math] is the range-separation parameter. See a detailed description of the DDH functionals in the documentation for the LMODELHF tag as well as here.

  • Dielectric-dependent hybrid (DDH) DD-RSH-CAM,[8]DSH[9]
LHFCALC = .TRUE.
LMODELHF = .TRUE.
AEXX = [math]\displaystyle{ \varepsilon_{\infty}^{-1} }[/math]
HFSCREEN = [math]\displaystyle{ \mu }[/math]
GGA = PE
with the default value BEXX=1 and where [math]\displaystyle{ \varepsilon_{\infty}^{-1} }[/math] is the inverse dielectric constant and [math]\displaystyle{ \mu }[/math] is the range-separation parameter. See a detailed description of the DDH functionals in the documentation for the LMODELHF tag as well as here.

LHFCALC = .TRUE.
LRHFCALC = .TRUE.
GGA = CA (or PZ)
HFSCREEN = 0.75 # Optimal value for solids
ALDAC = 1.0     # Necessary since correlation is by default not included when AEXX=1
with the default value AEXX=1.

LHFCALC = .TRUE.
LRHFCALC = .TRUE.
GGA = PE
HFSCREEN = 0.91 # Optimal value for the enthalpies of formation of molecules
ALDAC = 1.0     # Necessary since correlation is by default not included when AEXX=1
AGGAC = 1.0     # Necessary since correlation is by default not included when AEXX=1
with the default values AEXX=1.

LHFCALC = .TRUE.
LTHOMAS = .TRUE.
GGA = CA (or PZ)
HFSCREEN = [math]\displaystyle{ k_{\rm TF} }[/math]
ALDAC = 1.0     # Necessary since correlation is by default not included when AEXX=1
AGGAC = 1.0     # Necessary since correlation is by default not included when AEXX=1
with the default value AEXX=1 and where [math]\displaystyle{ k_{\rm TF} }[/math] is the Thomas-Fermi screening. More details can be found at LTHOMAS as well as here.

Unscreened hybrid functionals

LHFCALC = .TRUE.
GGA = PE
with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1, and ALDAC=1.

  • B3LYP[16] with VWN3 (or VWN5) for LDA correlation
LHFCALC = .TRUE. 
GGA     = B3 (or B5)
AEXX    = 0.2
AGGAX   = 0.72 
AGGAC   = 0.81 
ALDAC   = 0.19
with the default value ALDAX=1-AEXX=0.8.

LHFCALC = .TRUE.
GGA = LIBXC
LIBXC1 = HYB_GGA_XC_B3PW91 # or 401
AEXX = 0.2

LHFCALC = .TRUE.
GGA = LIBXC
LIBXC1 = HYB_GGA_XC_B1WC # or 412
AEXX = 0.16

  • SCAN0
LHFCALC = .TRUE.
METAGGA = SCAN
with the default values AEXX=0.25, AMGGAX=1-AEXX=0.75, and AMGGAC=1.

  • Hartree-Fock (no correlation)
LHFCALC = .TRUE. 
AEXX    = 1

with the default values AGGAX=1-AEXX=0, ALDAC=0, and AGGAC=0.


Mind: Note the default values when LHFCALC=.TRUE.:

Related tags and articles

GGA, METAGGA, LIBXC1, LIBXC2, AEXX, BEXX, ALDAX, ALDAC, AGGAX, AGGAC, AMGGAX, AMGGAC, LHFCALC, HFSCREEN, LMODELHF, LTHOMAS, LRHFCALC, Hybrid functionals: formalism

References

  1. https://libxc.gitlab.io/functionals/
  2. A. V. Krukau , O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
  3. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
  4. J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
  5. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
  6. L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys. 134, 024116 (2011).
  7. J. H. Skone, M. Govoni, and G. Galli, Nonempirical range-separated hybrid functionals for solids and molecules, Phys. Rev. B 93, 235106 (2016).
  8. W. Chen, G. Miceli, G.M. Rignanese, and A. Pasquarello, Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators, Phys. Rev. Mater. 2, 073803 (2018).
  9. Z.H. Cui, Y.C. Wang, M.Y. Zhang, X. Xu, and H. Jiang, Doubly Screened Hybrid Functional: An Accurate First-Principles Approach for Both Narrow- and Wide-Gap Semiconductors J. Phys. Chem. Lett., 9, 2338-2345 (2018).
  10. I. C. Gerber, J. G. Ángyán, M. Marsman, and G. Kresse, Range separated hybrid density functional with long-range Hartree-Fock exchange applied to solids, J. Chem. Phys. 127, 054101 (2007).
  11. I. C. Gerber and J. G. Ángyán, Hybrid functional with separated range, Chem. Phys. Lett. 415, 100 (2005).
  12. D. M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).
  13. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
  14. M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).
  15. C. Adamo and V. Barone, Phys. Rev. Lett., 110, 6158 (1999).
  16. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
  17. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
  18. D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Iniguez, and P. Ghosez, Phys. Rev. B 77, 165107 (2008).