List of hybrid functionals

From VASP Wiki

A certain number of unscreened and screened hybrid functionals are available in VASP, and furthermore if VASP is compiled with the library of exchange-correlation functionals Libxc, then most of the existing hybrid functionals can be used[1]. Examples of INCAR files are shown below. Since VASP.6.4.0 it is possible to use hybrid functionals that mix meta-GGA and Hartree-Fock exchange. Note that it is in general recommended to use the PBE POTCAR files for hybrid functionals.

Range-separated hybrid functionals

LHFCALC = .TRUE.
GGA = PE
HFSCREEN = 0.2
with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1, and ALDAC=1.

LHFCALC = .TRUE.
GGA = PE
HFSCREEN = 0.3
with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1, and ALDAC=1.

LHFCALC = .TRUE.
GGA = PS
HFSCREEN = 0.2
with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1, and ALDAC=1.

  • Dielectric-dependent hybrid (DDH) functional DD-RSH-CAM[7][8]
LMODELHF = .TRUE.
AEXX = [math]\displaystyle{ \varepsilon^{-1} }[/math]
HFSCREEN = [math]\displaystyle{ \mu }[/math]
GGA = PE
where [math]\displaystyle{ \varepsilon^{-1} }[/math] is the inverse dielectric constant and [math]\displaystyle{ \mu }[/math] is the range-separation parameter. See a detailed description of the DDH functionals in the documentation for the LMODELHF tag.

LHFCALC = .TRUE.
LRHFCALC = .TRUE.
GGA = CA (or PZ)
HFSCREEN = 0.75 # Optimal value for solids
ALDAC = 1.0     # Necessary since correlation is not included when AEXX=1
with the default value AEXX=1.

LHFCALC = .TRUE.
LRHFCALC = .TRUE.
GGA = PE
HFSCREEN = 0.91 # Optimal value for the enthalpies of formation of molecules
ALDAC = 1.0     # Necessary since correlation is not included when AEXX=1
AGGAC = 1.0     # Necessary since correlation is not included when AEXX=1
with the default values AEXX=1.

LHFCALC = .TRUE.
LTHOMAS = .TRUE.
GGA = CA (or PZ)
HFSCREEN = [math]\displaystyle{ k_{\rm TF} }[/math]
ALDAC = 1.0     # Necessary since correlation is not included when AEXX=1
AGGAC = 1.0     # Necessary since correlation is not included when AEXX=1
where [math]\displaystyle{ k_{\rm TF} }[/math] is the Thomas-Fermi screening and with the default value AEXX=1.

Unscreened hybrid functionals

LHFCALC = .TRUE.
GGA = PE
with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1, and ALDAC=1.
  • B3LYP[15] with VWN3 (or VWN5) for LDA correlation
LHFCALC = .TRUE. 
GGA     = B3 (or B5)
AEXX    = 0.2
AGGAX   = 0.72 
AGGAC   = 0.81 
ALDAC   = 0.19
with the default value ALDAX=1-AEXX=0.8.
LHFCALC = .TRUE.
GGA = LIBXC
LIBXC1 = HYB_GGA_XC_B3PW91 # or 401
AEXX = 0.2
LHFCALC = .TRUE.
GGA = LIBXC
LIBXC1 = HYB_GGA_XC_B1WC # or 412
AEXX = 0.16
  • SCAN0
LHFCALC = .TRUE.
METAGGA = SCAN
with the default values AEXX=0.25, AMGGAX=1-AEXX=0.75, and AMGGAC=1.
  • Hartree-Fock (no correlation)
LHFCALC = .TRUE. 
AEXX    = 1
with the default values AGGAX=1-AEXX=0, ALDAC=0, and AGGAC=0.


Mind: Note the default values when LHFCALC=.TRUE.:

Related tags and articles

GGA, METAGGA, LIBXC1, LIBXC2, AEXX, ALDAX, ALDAC, AGGAX, AGGAC, AMGGAX, AMGGAC, LHFCALC, HFSCREEN, LMODELHF, LRHFCALC, Hybrid functionals: formalism

References

  1. https://libxc.gitlab.io/functionals/
  2. A. V. Krukau , O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
  3. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
  4. J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
  5. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
  6. L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys. 134, 024116 (2011).
  7. W. Chen, G. Miceli, G.M. Rignanese, and A. Pasquarello, Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators, Phys. Rev. Mater. 2, 073803 (2018).
  8. Z.H. Cui, Y.C. Wang, M.Y. Zhang, X. Xu, and H. Jiang, Doubly Screened Hybrid Functional: An Accurate First-Principles Approach for Both Narrow- and Wide-Gap Semiconductors J. Phys. Chem. Lett., 9, 2338-2345 (2018).
  9. I. C. Gerber, J. G. Ángyán, M. Marsman, and G. Kresse, Range separated hybrid density functional with long-range Hartree-Fock exchange applied to solids, J. Chem. Phys. 127, 054101 (2007).
  10. I. C. Gerber and J. G. Ángyán, Hybrid functional with separated range, Chem. Phys. Lett. 415, 100 (2005).
  11. D. M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).
  12. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
  13. M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).
  14. C. Adamo and V. Barone, Phys. Rev. Lett., 110, 6158 (1999).
  15. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
  16. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
  17. D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Iniguez, and P. Ghosez, Phys. Rev. B 77, 165107 (2008).