Category:Interface pinning: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
''' | Use '''interface pinning''' to determine the melting point from a [[:Category: Molecular dynamics|molecular-dynamics]] simulation of the interface of a liquid and a solid phase. | ||
<!-- == Theory == --> | |||
Because the typical behavior of such a simulation is to freeze or melt, the interface is ''pinned'' with a bias potential. | |||
This potential applies an energy penalty for deviations from the desired two-phase system. | |||
Prefer simulating above the melting point because the bias potential prevents melting better than freezing. | |||
The Steinhardt-Nelson order parameter <math>Q_6</math> discriminates between the solid and the liquid phase. | |||
With the bias potential | |||
:<math>U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - Q_{6,\text{pinned}}\right)^2 </math> | |||
penalizes differences between the order parameter for the current configuration <math>Q_6({\mathbf{R}})</math> and the one for the desired interface <math>Q_{6,\text{pinned}}</math>. | |||
<math>\kappa</math> is an adjustable parameter determining the strength of the pinning. | |||
Under the action of the bias potential, the system equilibrates to the desired two-phase configuration. | |||
An important observable is the difference between the average order parameter <math>\langle Q_6 \rangle</math> in equilibrium and the desired order parameter <math>Q_{6,\text{pinned}}</math>. | |||
This difference relates to the the chemical potentials of the solid <math>\mu_\text{solid}</math> and the liquid <math>\mu_\text{liquid}</math> phase | |||
:<math> | |||
N(\mu_\text{solid} - \mu_\text{liquid}) = | |||
\kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - Q_{6,\text{pinned}}) | |||
</math> | |||
where <math>N</math> is the number of atoms in the simulation. | where <math>N</math> is the number of atoms in the simulation. | ||
Computing the forces requires a differentiable <math>Q_6(\mathbf{R})</math>. | |||
<!-- PLEASE REPHRASE - I did not understand this part and how it relates to Q_6(R) --> | |||
<math>Q_6(\mathbf{R})</math> | We use a smooth fading function <math>w(r)</math> to weight each pair of atoms at distance <math>r</math> for the calculation of the <math>Q_6</math> order parameter | ||
:<math> w(r) = \left\{ \begin{array}{cl} 1 &\textrm{for} \,\, r\leq n \\ | :<math> w(r) = \left\{ \begin{array}{cl} 1 &\textrm{for} \,\, r\leq n \\ | ||
Line 25: | Line 32: | ||
0 &\textrm{for} \,\,f\leq r \end{array}\right. </math> | 0 &\textrm{for} \,\,f\leq r \end{array}\right. </math> | ||
Here <math>n</math> and <math>f</math> are the near- and far-fading distances given in the {{TAG|INCAR}} file respectively. | <!-- is w(r) equivalent to (1 - t)^2(1 + 2t) with t = (r - n) / (f - n)? --> | ||
Here <math>n</math> and <math>f</math> are the near- and far-fading distances given in the {{TAG|INCAR}} file respectively. | |||
<!-- END REPHRASE --> | |||
The radial distribution function <math>g(r)</math> of the crystal phase yields a good choice for the fading range. | |||
To prevent spurious stress, <math>g(r)</math> should be small where the derivative of <math>w(r)</math> is large. | |||
Set the near fading distance <math>n</math> to the distance where <math>g(r)</math> goes below 1 after the first peak. | |||
Set the far fading distance <math>f</math> to the distance where <math>g(r)</math> goes above 1 again before the second peak. | |||
== How to == | == How to == | ||
The '''interface pinning''' method uses the <math>Np_zT</math> ensemble where the barostat only acts | The '''interface pinning''' method uses the <math>Np_zT</math> ensemble where the barostat only acts in the direction of the lattice that is perpendicular to the solid-liquid interface. This uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions. | ||
The following variables need to be set for the '''interface pinning''' method: | The following variables need to be set for the '''interface pinning''' method: |
Revision as of 08:40, 7 April 2022
Use interface pinning to determine the melting point from a molecular-dynamics simulation of the interface of a liquid and a solid phase. Because the typical behavior of such a simulation is to freeze or melt, the interface is pinned with a bias potential. This potential applies an energy penalty for deviations from the desired two-phase system. Prefer simulating above the melting point because the bias potential prevents melting better than freezing.
The Steinhardt-Nelson order parameter [math]\displaystyle{ Q_6 }[/math] discriminates between the solid and the liquid phase. With the bias potential
- [math]\displaystyle{ U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - Q_{6,\text{pinned}}\right)^2 }[/math]
penalizes differences between the order parameter for the current configuration [math]\displaystyle{ Q_6({\mathbf{R}}) }[/math] and the one for the desired interface [math]\displaystyle{ Q_{6,\text{pinned}} }[/math]. [math]\displaystyle{ \kappa }[/math] is an adjustable parameter determining the strength of the pinning.
Under the action of the bias potential, the system equilibrates to the desired two-phase configuration. An important observable is the difference between the average order parameter [math]\displaystyle{ \langle Q_6 \rangle }[/math] in equilibrium and the desired order parameter [math]\displaystyle{ Q_{6,\text{pinned}} }[/math]. This difference relates to the the chemical potentials of the solid [math]\displaystyle{ \mu_\text{solid} }[/math] and the liquid [math]\displaystyle{ \mu_\text{liquid} }[/math] phase
- [math]\displaystyle{ N(\mu_\text{solid} - \mu_\text{liquid}) = \kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - Q_{6,\text{pinned}}) }[/math]
where [math]\displaystyle{ N }[/math] is the number of atoms in the simulation.
Computing the forces requires a differentiable [math]\displaystyle{ Q_6(\mathbf{R}) }[/math]. We use a smooth fading function [math]\displaystyle{ w(r) }[/math] to weight each pair of atoms at distance [math]\displaystyle{ r }[/math] for the calculation of the [math]\displaystyle{ Q_6 }[/math] order parameter
- [math]\displaystyle{ w(r) = \left\{ \begin{array}{cl} 1 &\textrm{for} \,\, r\leq n \\ \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3} &\textrm{for} \,\, n\lt r\lt f \\ 0 &\textrm{for} \,\,f\leq r \end{array}\right. }[/math]
Here [math]\displaystyle{ n }[/math] and [math]\displaystyle{ f }[/math] are the near- and far-fading distances given in the INCAR file respectively.
The radial distribution function [math]\displaystyle{ g(r) }[/math] of the crystal phase yields a good choice for the fading range.
To prevent spurious stress, [math]\displaystyle{ g(r) }[/math] should be small where the derivative of [math]\displaystyle{ w(r) }[/math] is large.
Set the near fading distance [math]\displaystyle{ n }[/math] to the distance where [math]\displaystyle{ g(r) }[/math] goes below 1 after the first peak.
Set the far fading distance [math]\displaystyle{ f }[/math] to the distance where [math]\displaystyle{ g(r) }[/math] goes above 1 again before the second peak.
How to
The interface pinning method uses the [math]\displaystyle{ Np_zT }[/math] ensemble where the barostat only acts in the direction of the lattice that is perpendicular to the solid-liquid interface. This uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions.
The following variables need to be set for the interface pinning method:
- OFIELD_Q6_NEAR: This tag defines the near-fading distance [math]\displaystyle{ n }[/math].
- OFIELD_Q6_FAR: This tag defines the far-fading distance [math]\displaystyle{ f }[/math].
- OFIELD_KAPPA: This tag defines the coupling strength [math]\displaystyle{ \kappa }[/math] of the bias potential.
- OFIELD_A: This tag defines the desired value of the order parameter [math]\displaystyle{ a }[/math].
The following is a sample INCAR file for interface pinning of sodium[1]:
TEBEG = 400 # temperature in K POTIM = 4 # timestep in fs IBRION = 0 # do MD ISIF = 3 # use Parrinello-Rahman barostat for the lattice MDALGO = 3 # use Langevin thermostat LANGEVIN_GAMMA = 1.0 # friction coef. for atomic DoFs for each species LANGEVIN_GAMMA_L = 3.0 # friction coef. for the lattice DoFs PMASS = 100 # mass for lattice DoFs LATTICE_CONSTRAINTS = F F T # fix x&y, release z lattice dynamics OFIELD_Q6_NEAR = 3.22 # fading distances for computing a continuous Q6 OFIELD_Q6_FAR = 4.384 # in Angstrom OFIELD_KAPPA = 500 # strength of bias potential in eV/(unit of Q)^2 OFIELD_A = 0.15 # desired value of the Q6 order parameter
References
This category currently contains no pages or media.