ML SION2: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{TAGDEF|ML_SION2|[real]|1.5*{{TAG|ML_SION1}}}} | {{TAGDEF|ML_SION2|[real]|1.5*{{TAG|ML_SION1}}}} | ||
Description: This tag specifies the width of the Gaussian functions used for broadening the atomic distributions of the angular descriptor within the machine learning force field method. | Description: This tag specifies the width <math>\sigma_\text{atom}</math> of the Gaussian functions used for broadening the atomic distributions of the angular descriptor <math>\rho^{(3)}_i(r)</math> within the machine learning force field method (see [[Machine learning force field: Theory#Descriptors|this section]]). | ||
---- | ---- | ||
The unit of {{TAG|ML_SION2}} is | The unit of {{TAG|ML_SION2}} is <math>\AA</math>. | ||
{{BOX|tip|Our test calculations indicate that a ratio {{TAG|ML_SION2}} / {{TAG|ML_SION1}} {{=}} 1.5 results in an optimal training performance. Furthermore, a value of 0.5 was found to be a good default value for {{TAG|ML_SION2}}. Both findings together result in the default value for {{TAG|ML_SION1}}.|Background:}} | |||
== Related Tags and Sections == | == Related Tags and Sections == |
Revision as of 19:59, 10 October 2021
ML_SION2 = [real]
Default: ML_SION2 = 1.5*ML_SION1
Description: This tag specifies the width [math]\displaystyle{ \sigma_\text{atom} }[/math] of the Gaussian functions used for broadening the atomic distributions of the angular descriptor [math]\displaystyle{ \rho^{(3)}_i(r) }[/math] within the machine learning force field method (see this section).
The unit of ML_SION2 is [math]\displaystyle{ \AA }[/math]. Background:{| style="border: 0px solid #3E70EA; padding: 5px; background: #BBCCF5"
| Tip: Our test calculations indicate that a ratio ML_SION2 / ML_SION1 = 1.5 results in an optimal training performance. Furthermore, a value of 0.5 was found to be a good default value for ML_SION2. Both findings together result in the default value for ML_SION1. |}
Related Tags and Sections
ML_LMLFF, ML_SION1, ML_RCUT1, ML_RCUT2, ML_MRB1, ML_MRB2