ML_RCUT1

From VASP Wiki

ML_RCUT1 = [real]
Default: ML_RCUT1 = 8.0 

Description: Sets the cutoff radius [math]\displaystyle{ R_\text{cut} }[/math] for the radial descriptor [math]\displaystyle{ \rho^{(2)}_i(r) }[/math] in [math]\displaystyle{ \AA }[/math].


The radial descriptor for machine-learned force fields is constructed from

[math]\displaystyle{ \rho_{i}^{(2)}\left(r\right) = \frac{1}{4\pi} \int \rho_{i}\left(r\hat{\mathbf{r}}\right) d\hat{\mathbf{r}}, \quad \text{where} \quad \rho_{i}\left(\mathbf{r}\right) = \sum\limits_{j=1}^{N_{\mathrm{a}}} f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right) }[/math]

and [math]\displaystyle{ g\left(\mathbf{r}\right) }[/math] is an approximation of the delta function. A basis set expansion of [math]\displaystyle{ \rho^{(2)}_i(r) }[/math] yields the expansion coefficients [math]\displaystyle{ c_{n00}^{i} }[/math], which are used in practice to describe the atomic environment; refer to the theory of machine-learned force fields for details. The tag ML_RCUT1 sets the cutoff radius [math]\displaystyle{ R_\text{cut} }[/math] at which the cutoff function [math]\displaystyle{ f_{\mathrm{cut}}\left(r_{ij}\right) }[/math] decays to zero.

Mind: The cutoff radius determines how many neighbor atoms [math]\displaystyle{ N_\mathrm{a} }[/math] are considered to describe each central atom's environment. Hence, important features may be missed if the cutoff radius is too small. On the other hand, a large cutoff radius increases the computational cost of the descriptor as the cutoff sphere contains more neighbor atoms. A good compromise is always system-dependent. Therefore, different values should be tested to achieve satisfying accuracy and speed.

The unit of the cut-off radius is [math]\displaystyle{ \AA }[/math].

Related tags and articles

ML_LMLFF, ML_RCUT2, ML_W1, ML_SION1, ML_SION2, ML_MRB1, ML_MRB2

Examples that use this tag