ML LCOUPLE: Difference between revisions
m (Karsai moved page ML FF LCOUPLE MB to ML LCOUPLE) |
No edit summary |
||
| Line 1: | Line 1: | ||
{{TAGDEF| | {{TAGDEF|ML_LCOUPLE|[logical]|.FALSE.}} | ||
Description: This tag specifies whether coupling parameters are used for the calculation of chemical potentials or not within the machine learning force field method. | Description: This tag specifies whether coupling parameters are used for the calculation of chemical potentials or not within the machine learning force field method. | ||
| Line 26: | Line 26: | ||
For thermodynamic integration the following parameters have to be set: | For thermodynamic integration the following parameters have to be set: | ||
*{{TAG| | *{{TAG|ML_ISTART}}=2. | ||
*{{TAG| | *{{TAG|ML_LCOUPLE}}=''.TRUE.''. | ||
*The number of atoms for which a coupling parameter is introduced (<math>i \notin M </math>): {{TAG| | *The number of atoms for which a coupling parameter is introduced (<math>i \notin M </math>): {{TAG|ML_NATOM_COUPLED}}. | ||
*The list of atom indices that for that the coupling parameter is applied in the interaction: {{TAG| | *The list of atom indices that for that the coupling parameter is applied in the interaction: {{TAG|ML_ICOUPLE}}. | ||
*The strength of the coupling parameter <math>lambda</math> between 0 and 1: {{TAG| | *The strength of the coupling parameter <math>lambda</math> between 0 and 1: {{TAG|ML_RCOUPLE}}. | ||
The derivative of the hamiltonian with respect to the coupling constant <math>dH/d\lambda</math> is written out at every MD step to the {{TAG|ML_LOGFILE}}. A sample output should look like the following | The derivative of the hamiltonian with respect to the coupling constant <math>dH/d\lambda</math> is written out at every MD step to the {{TAG|ML_LOGFILE}}. A sample output should look like the following | ||
| Line 41: | Line 41: | ||
== Related Tags and Sections == | == Related Tags and Sections == | ||
{{TAG| | {{TAG|ML_LMLFF}}, {{TAG|ML_NATOM_COUPLED}}, {{TAG|ML_ICOUPLE}}, {{TAG|ML_RCOUPLE}} | ||
{{sc| | {{sc|ML_LCOUPLE|Examples|Examples that use this tag}} | ||
---- | ---- | ||
[[Category:INCAR]][[Category:Machine Learning]][[Category:Machine Learned Force Fields]][[Category: Alpha]] | [[Category:INCAR]][[Category:Machine Learning]][[Category:Machine Learned Force Fields]][[Category: Alpha]] | ||
Revision as of 08:53, 23 August 2021
ML_LCOUPLE = [logical]
Default: ML_LCOUPLE = .FALSE.
Description: This tag specifies whether coupling parameters are used for the calculation of chemical potentials or not within the machine learning force field method.
In thermodynamic integration a coupling parameter [math]\displaystyle{ \lambda }[/math] is introduced to the Hamiltonian to smoothly switch between a "non-interacting" reference state and a "fully-interacting" state. The change of the free energy along this path is written as
[math]\displaystyle{ \Delta \mu = \int\limits_{0}^{1} \langle \frac{dH(\lambda)}{d\lambda} \rangle_{\lambda} d\lambda. }[/math]
Using machine learning force fields the Hamiltonian can be written as
[math]\displaystyle{ H (\lambda) = \sum\limits_{i=1}^{N_{a}} \frac{|\mathbf{p}_{i}|^2}{2m_{i}} + \sum\limits_{i \notin M} U_{i}(\lambda) + \lambda \sum\limits_{i \in M} U_{i}(\lambda) + \sum\limits_{i}^{N_{a}} U_{i,\mathbf{atom}}. }[/math]
where [math]\displaystyle{ N_{a} }[/math] denotes the number of atoms and [math]\displaystyle{ U_{i,\mathbf{atom}} }[/math] is an atomic reference energy for a single non interacting atom. The first term in the equation describes the potential energy and the second and third term describe the potential energy of an atom [math]\displaystyle{ i }[/math]. The index [math]\displaystyle{ M }[/math] denotes the atoms whose interaction is controlled by a coupling parameter. The interaction of the atoms are controlled by scaling the contributions to the atom density via the coupling parameter
[math]\displaystyle{ \rho (\mathbf{r},\lambda) = \sum\limits_{j\notin M} f_{\mathrm{cut}} \left( \left| \mathbf{r}_{j} - \mathbf{r}_{i} \right| \right) g \left[ \mathbf{r} - \left( \mathbf{r}_{j} - \mathbf{r}_{i} \right) \right] + \lambda \sum\limits_{j\in M} f_{\mathrm{cut}} \left( \left| \mathbf{r}_{j} - \mathbf{r}_{i} \right| \right) g \left[ \mathbf{r} - \left( \mathbf{r}_{j} - \mathbf{r}_{i} \right) \right]. }[/math]
Further details on the implementation can be found in reference [1].
For thermodynamic integration the following parameters have to be set:
- ML_ISTART=2.
- ML_LCOUPLE=.TRUE..
- The number of atoms for which a coupling parameter is introduced ([math]\displaystyle{ i \notin M }[/math]): ML_NATOM_COUPLED.
- The list of atom indices that for that the coupling parameter is applied in the interaction: ML_ICOUPLE.
- The strength of the coupling parameter [math]\displaystyle{ lambda }[/math] between 0 and 1: ML_RCOUPLE.
The derivative of the hamiltonian with respect to the coupling constant [math]\displaystyle{ dH/d\lambda }[/math] is written out at every MD step to the ML_LOGFILE. A sample output should look like the following
dH/dRCOUPLE (eV): 0.893558
References
Related Tags and Sections
ML_LMLFF, ML_NATOM_COUPLED, ML_ICOUPLE, ML_RCOUPLE