ML_LCOUPLE

From VASP Wiki

ML_LCOUPLE = [logical]
Default: ML_LCOUPLE = .FALSE. 

Description: This tag specifies whether thermodynamic integration is activated in order to calculate the chemical potentials within the machine learning force field method.


In thermodynamic integration a coupling parameter [math]\displaystyle{ \lambda }[/math] is introduced to the Hamiltonian to smoothly switch between a "non-interacting" reference state and a "fully-interacting" state. The change of the free energy along this path is written as

[math]\displaystyle{ \Delta \mu = \int\limits_{0}^{1} \langle \frac{dH(\lambda)}{d\lambda} \rangle_{\lambda} d\lambda. }[/math]

Using machine learning force fields the Hamiltonian can be written as

[math]\displaystyle{ H (\lambda) = \sum\limits_{i=1}^{N_{a}} \frac{|\mathbf{p}_{i}|^2}{2m_{i}} + \sum\limits_{i \notin M} U_{i}(\lambda) + \lambda \sum\limits_{i \in M} U_{i}(\lambda) + \sum\limits_{i}^{N_{a}} U_{i,\mathbf{atom}}. }[/math]

where [math]\displaystyle{ N_{a} }[/math] denotes the number of atoms and [math]\displaystyle{ U_{i,\mathbf{atom}} }[/math] is an atomic reference energy for a single non interacting atom. The first term in the equation describes the potential energy and the second and third term describe the potential energy of an atom [math]\displaystyle{ i }[/math]. The index [math]\displaystyle{ M }[/math] denotes the atoms whose interaction is controlled by a coupling parameter. The interactions of the atoms are controlled by scaling the contributions to the atom density via the coupling parameter

[math]\displaystyle{ \rho (\mathbf{r},\lambda) = \sum\limits_{j\notin M} f_{\mathrm{cut}} \left( \left| \mathbf{r}_{j} - \mathbf{r}_{i} \right| \right) g \left[ \mathbf{r} - \left( \mathbf{r}_{j} - \mathbf{r}_{i} \right) \right] + \lambda \sum\limits_{j\in M} f_{\mathrm{cut}} \left( \left| \mathbf{r}_{j} - \mathbf{r}_{i} \right| \right) g \left[ \mathbf{r} - \left( \mathbf{r}_{j} - \mathbf{r}_{i} \right) \right]. }[/math]


Further details on the implementation can be found in reference [1].

For thermodynamic integration the following parameters have to be set:

  • ML_MODE = run.
  • ML_LCOUPLE = .TRUE..
  • The number of atoms for which a coupling parameter is introduced ([math]\displaystyle{ i \in M }[/math]): ML_NATOM_COUPLED.
  • The list of atom indices that for that the coupling parameter is applied in the interaction: ML_ICOUPLE.
  • The strength of the coupling parameter [math]\displaystyle{ \lambda }[/math] between 0 and 1: ML_RCOUPLE.

The derivative of the hamiltonian with respect to the coupling constant [math]\displaystyle{ dH/d\lambda }[/math] is written out at every MD step to the ML_LOGFILE. A sample output should look like this:

# DCOUPLE ################################
# DCOUPLE This line shows the derivative of the Hamiltonian with respect to coupling constant (dH/dlambda).
# DCOUPLE 
# DCOUPLE nstep .......... MD time step or input structure counter
# DCOUPLE der_H_lambda ... dH/dlambda
# DCOUPLE ################################
# DCOUPLE           nstep     der_H_lambda
# DCOUPLE               2                3
# DCOUPLE ################################
DCOUPLE                 1  -1.08332135E+01
DCOUPLE                 2  -1.08132321E+01
DCOUPLE                 3  -1.07631992E+01
DCOUPLE                 4  -1.06786675E+01
DCOUPLE                 5  -1.05493088E+01
DCOUPLE                 6  -1.03561161E+01
DCOUPLE                 7  -1.00762443E+01
DCOUPLE                 8  -9.69961878E+00
DCOUPLE                 9  -9.25531640E+00
DCOUPLE                10  -8.82525354E+00
...

References


Related tags and articles

ML_LMLFF, ML_NATOM_COUPLED, ML_ICOUPLE, ML_RCOUPLE

Examples that use this tag