ELPH TRANSPORT DRIVER: Difference between revisions

From VASP Wiki
(Fix default value)
No edit summary
Line 17: Line 17:


; {{TAGO|ELPH_TRANSPORT_DRIVER|1|op==}}
; {{TAGO|ELPH_TRANSPORT_DRIVER|1|op==}}
: Use a linear grid of energies with {{TAG|TRANSPORT_NEDOS}} in the interval determined by {{TAG|ELPH_TRANSPORT_DFERMI_TOL}} or {{TAG|ELPH_TRANSPORT_EMIN}} and {{TAG|ELPH_TRANSPORT_EMAX}} and the Simpson integration rule to evaluate the Onsager coefficients.
: The discretized Onsager coefficient is evaluated as
::<math>
L_{ij} \;\approx\; \sum_{k=1}^{N} w_k \;
\sigma(\epsilon_k)\;
(\epsilon_k - \eta)^{\,i+j-2}\;
\left( -\frac{\partial f^0}{\partial \epsilon} \right).
</math>
:with <math>\epsilon_k = \epsilon_\text{min}+(k-1)\Delta \epsilon,\;\; k=1,\dots,N</math> and <math>\Delta \epsilon = \tfrac{\epsilon_\text{max}-\epsilon_\text{min}}{N-1}</math> and <math>\epsilon_\text{min}</math>={{TAG|ELPH_TRANSPORT_EMIN}} and <math>\epsilon_\text{max}</math>={{TAG|ELPH_TRANSPORT_EMAX}} or alternatively both <math>\epsilon_\text{min}</math> and <math>\epsilon_\text{max}</math> are set by {{TAG|ELPH_TRANSPORT_DFERMI_TOL}}, <math>w_k</math> the weights due to the Simpson integration rule and N={{TAG|TRANSPORT_NEDOS}}.


; {{TAGO|ELPH_TRANSPORT_DRIVER|2|op==}}
; {{TAGO|ELPH_TRANSPORT_DRIVER|2|op==}}
: Use Gauss-Legendre integration to evaluate the Onsager coefficients. The convergence of the integral can be checked by performing a convergence study with respect to {{TAG|TRANSPORT_NEDOS}} alone.
: Use Gauss-Legendre integration to evaluate the Onsager coefficients. The convergence of the integral can be checked by performing a convergence study with respect to N={{TAG|TRANSPORT_NEDOS}} alone. In this case the Onsager coefficients are evaluated using the following discretization
::<math>
L_{ij} \;\approx\; \tfrac{1}{2} \sum_{k=1}^N
w_k \,
\left( \frac{k_B T}{-e} \ln \frac{1+x_k}{1-x_k} \right)^{i+j-2}
\sigma\!\left(\eta + k_B T \ln\frac{1+x_k}{1-x_k}\right),
</math>
:with <math>w_k</math> and <math>x_k</math> the weights and abcissae of the Gauss-Legendre quadrature rule.


==Related tags and articles==
==Related tags and articles==

Revision as of 15:19, 21 October 2025

ELPH_TRANSPORT_DRIVER = [integer]
Default: ELPH_TRANSPORT_DRIVER = 2 

Description: choose method to compute the Onsager coefficients, which are then used to compute the transport coefficients.

Mind: Available as of VASP 6.5.0

The Onsager coefficients can be computed using either of the options bellow, each with its own advantages and disadvantages. They are defined as

[math]\displaystyle{ L_{ij} = \int d\epsilon \, \sigma(\epsilon) \, (\epsilon-\mu)^{i+j-2} \left( -\frac{\partial f^0}{\partial \epsilon} \right), }[/math]

where [math]\displaystyle{ \sigma(\epsilon) }[/math] is the transport distribution function, [math]\displaystyle{ \mu }[/math] the chemical potential, and [math]\displaystyle{ f^0 }[/math] the Fermi–Dirac distribution.

ELPH_TRANSPORT_DRIVER = 1
The discretized Onsager coefficient is evaluated as
[math]\displaystyle{ L_{ij} \;\approx\; \sum_{k=1}^{N} w_k \; \sigma(\epsilon_k)\; (\epsilon_k - \eta)^{\,i+j-2}\; \left( -\frac{\partial f^0}{\partial \epsilon} \right). }[/math]
with [math]\displaystyle{ \epsilon_k = \epsilon_\text{min}+(k-1)\Delta \epsilon,\;\; k=1,\dots,N }[/math] and [math]\displaystyle{ \Delta \epsilon = \tfrac{\epsilon_\text{max}-\epsilon_\text{min}}{N-1} }[/math] and [math]\displaystyle{ \epsilon_\text{min} }[/math]=ELPH_TRANSPORT_EMIN and [math]\displaystyle{ \epsilon_\text{max} }[/math]=ELPH_TRANSPORT_EMAX or alternatively both [math]\displaystyle{ \epsilon_\text{min} }[/math] and [math]\displaystyle{ \epsilon_\text{max} }[/math] are set by ELPH_TRANSPORT_DFERMI_TOL, [math]\displaystyle{ w_k }[/math] the weights due to the Simpson integration rule and N=TRANSPORT_NEDOS.
ELPH_TRANSPORT_DRIVER = 2
Use Gauss-Legendre integration to evaluate the Onsager coefficients. The convergence of the integral can be checked by performing a convergence study with respect to N=TRANSPORT_NEDOS alone. In this case the Onsager coefficients are evaluated using the following discretization
[math]\displaystyle{ L_{ij} \;\approx\; \tfrac{1}{2} \sum_{k=1}^N w_k \, \left( \frac{k_B T}{-e} \ln \frac{1+x_k}{1-x_k} \right)^{i+j-2} \sigma\!\left(\eta + k_B T \ln\frac{1+x_k}{1-x_k}\right), }[/math]
with [math]\displaystyle{ w_k }[/math] and [math]\displaystyle{ x_k }[/math] the weights and abcissae of the Gauss-Legendre quadrature rule.

Related tags and articles