ENCUTGWSOFT: Difference between revisions
No edit summary |
No edit summary |
||
| Line 20: | Line 20: | ||
This kernel ''squeezes'' contributions from large wave vectors <math>G>G_{max}</math> into the window given by {{TAGBL|ENCUTGWSOFT}}. Effectively, this extrapolates the RPA correlation energy to the {{TAG|ENCUTGW}} <math>\to \infty</math> limit, assuming that the basis set incompleteness error falls off as <math>1/\mathrm{ENCUTGW}^{3/2}</math>. | This kernel ''squeezes'' contributions from large wave vectors <math>G>G_{max}</math> into the window given by {{TAGBL|ENCUTGWSOFT}}. Effectively, this extrapolates the RPA correlation energy to the {{TAG|ENCUTGW}} <math>\to \infty</math> limit, assuming that the basis set incompleteness error falls off as <math>1/\mathrm{ENCUTGW}^{3/2}</math>. | ||
== Related | == Related tags and articles == | ||
{{TAG|PRECFOCK}}, | {{TAG|PRECFOCK}}, | ||
{{TAG|ENCUT}}, | {{TAG|ENCUT}}, | ||
| Line 29: | Line 29: | ||
{{sc|ENCUTGWSOFT|Examples|Examples that use this tag}} | {{sc|ENCUTGWSOFT|Examples|Examples that use this tag}} | ||
---- | ---- | ||
[[Category:INCAR]][[Category:Many-Body Perturbation Theory]][[Category:GW]] | [[Category:INCAR tag]][[Category:Many-Body Perturbation Theory]][[Category:GW]] | ||
Revision as of 14:13, 8 April 2022
ENCUTGWSOFT = [real]
| Default: ENCUTGWSOFT | = ENCUTGW[math]\displaystyle{ \times 0.8 }[/math] | for ALGO=ACFDT |
| = ENCUTGW[math]\displaystyle{ \times 0.8 }[/math] | as of VASP.6.3 | |
| = ENCUTGW | else |
| Important: For vasp.6.3 and later releases ENCUTGWSOFT always defaults to ENCUTGW[math]\displaystyle{ \times 0.8 }[/math]. |
Descprition: The flag ENCUTGWSOFT sets the energy cutoff for response function, such that it allows to truncate the Coulomb kernel slowly between the energy specified by ENCUTGWSOFT and ENCUTGW using a cosine window function.
This usually leads to much smoother energy-volume curves in ACFDT calculations and MP2 calculations. The modified Coulomb kernel is in this case: [math]\displaystyle{ v_{G} = \frac{4 \pi e^2} {G^2} \frac{1}{2} \left( 1 + \cos \left( \pi \, \frac{ \frac{\hbar^{2} G^2 }{2 m_e} - \mathrm{ ENCUTGWSOFT} }{ \mathrm{ENCUTGW} - \mathrm{ENCUTGWSOFT}} \right) \right) \qquad \mbox{for} \quad \frac{\hbar^2 G^2 }{2 m_e} \gt \mathrm{ENCUTGWSOFT} }[/math]
If LSCK is set to .TRUE., the squeezed Coulomb kernel is used instead of the cosine window:[1]
[math]\displaystyle{ v_{G} = 4 \pi e^2 \frac{ (G_{max}-G_{min})(G_{max}-G) }{ (G_{min}^2 - G(2G_{min}-G_{max}))^2 } \qquad \mbox{for} \quad \mathrm{ENCUTGWSOFT}=\frac{\hbar^2G_{min}^2}{2m_e}\lt \frac{\hbar^2 G^2}{2m_e}\lt \frac{\hbar^2G_{max}^2}{2m_e}=\mathrm{ENCUTGW} }[/math]
This kernel squeezes contributions from large wave vectors [math]\displaystyle{ G\gt G_{max} }[/math] into the window given by ENCUTGWSOFT. Effectively, this extrapolates the RPA correlation energy to the ENCUTGW [math]\displaystyle{ \to \infty }[/math] limit, assuming that the basis set incompleteness error falls off as [math]\displaystyle{ 1/\mathrm{ENCUTGW}^{3/2} }[/math].
Related tags and articles
PRECFOCK, ENCUT, ENCUTGW, GW calculations, LSCK