ML MRB1: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 17: Line 17:
</math>
</math>


The tag {{TAG|ML_MRB1}} sets the number <math>N_\text{R}^0</math> of radial basis functions to use in this expansion. The value of {{TAG|ML_MRB1}} is the default value for {{TAG|ML_MRB2}}.
The tag {{TAG|ML_MRB1}} sets the number <math>N_\text{R}^0</math> of radial basis functions to use in this expansion.
   
   
== Related tags and articles ==
== Related tags and articles ==

Latest revision as of 08:06, 9 May 2023

ML_MRB1 = [integer]
Default: ML_MRB1 = 12 

Description: This tag sets the number [math]\displaystyle{ N_\text{R}^0 }[/math] of radial basis functions used to expand the radial descriptor [math]\displaystyle{ \rho^{(2)}_i(r) }[/math] within the machine learning force field method.


The radial descriptor is constructed from

[math]\displaystyle{ \rho_{i}^{(2)}\left(r\right) = \frac{1}{4\pi} \int \rho_{i}\left(r\hat{\mathbf{r}}\right) d\hat{\mathbf{r}}, \quad \text{where} \quad \rho_{i}\left(\mathbf{r}\right) = \sum\limits_{j=1}^{N_{\mathrm{a}}} f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right) }[/math]

and [math]\displaystyle{ g\left(\mathbf{r}\right) }[/math] is an approximation of the delta function. In practice, the continuous function above is transformed into a discrete set of numbers by expanding it into a set of radial basis functions [math]\displaystyle{ \chi_{n0}(r) }[/math] (see this section for more details):

[math]\displaystyle{ \rho_{i}^{(2)}\left(r\right) = \frac{1}{\sqrt{4\pi}} \sum\limits_{n=1}^{N^{0}_{\mathrm{R}}} c_{n00}^{i} \chi_{n0}\left(r\right). }[/math]

The tag ML_MRB1 sets the number [math]\displaystyle{ N_\text{R}^0 }[/math] of radial basis functions to use in this expansion.

Related tags and articles

ML_LMLFF, ML_MRB2, ML_W1, ML_RCUT1, ML_SION1

Examples that use this tag