ML SION2: Difference between revisions
No edit summary |
|||
(10 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{DISPLAYTITLE:ML_SION2}} | ||
{{ | {{TAGDEF|ML_SION2|[real]|{{TAG|ML_SION1}}}} | ||
Description: This tag specifies the width of the Gaussian functions used for broadening the atomic distributions of the angular descriptor within the machine learning force field method. | Description: This tag specifies the width <math>\sigma_\text{atom}</math> of the Gaussian functions used for broadening the atomic distributions of the angular descriptor <math>\rho^{(3)}_i(r)</math> within the machine learning force field method. | ||
---- | ---- | ||
The angular descriptor is constructed from | |||
<math> | |||
\rho_{i}^{(3)}\left(r,s,\theta\right) = \iint d\hat{\mathbf{r}} d\hat{\mathbf{s}} \delta\left(\hat{\mathbf{r}}\cdot\hat{\mathbf{s}} - \mathrm{cos}\theta\right) \sum\limits_{j=1}^{N_{a}} \sum\limits_{k \ne j}^{N_{a}} \rho_{ik} \left(r\hat{\mathbf{r}}\right) \rho_{ij} \left(s\hat{\mathbf{s}}\right), \quad \text{where} \quad | |||
\rho_{ij}\left(\mathbf{r}\right) = f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right) | |||
</math> | |||
and <math>g\left(\mathbf{r}\right)</math> is the following approximation of the delta function: | |||
{ | |||
{{sc| | <math> | ||
g\left(\mathbf{r}\right)=\frac{1}{\sqrt{2\sigma_{\mathrm{atom}}\pi}}\mathrm{exp}\left(-\frac{|\mathbf{r}|^{2}}{2\sigma_{\mathrm{atom}}^{2}}\right). | |||
</math> | |||
The tag {{TAG|ML_SION2}} sets the width <math>\sigma_\text{atom}</math> of the above Gaussian function (see [[Machine learning force field: Theory#Descriptors|this section]] for more details). | |||
{{BOX|tip|Our test calculations indicate that {{TAG|ML_SION1}} {{=}} {{TAG|ML_SION2}} results in an optimal training performance. Furthermore, a value of 0.5 was found to be a good default value for both. However, the best choice is system-dependent, careful testing may improve machine learning results.}} | |||
The unit of {{TAG|ML_SION2}} is <math>\AA</math>. | |||
== Related tags and articles == | |||
{{TAG|ML_LMLFF}}, {{TAG|ML_SION1}}, {{TAG|ML_RCUT1}}, {{TAG|ML_RCUT2}}, {{TAG|ML_MRB1}}, {{TAG|ML_MRB2}} | |||
{{sc|ML_SION2|Examples|Examples that use this tag}} | |||
---- | ---- | ||
[[Category:INCAR]][[Category:Machine | [[Category:INCAR tag]][[Category:Machine-learned force fields]] |
Latest revision as of 13:31, 8 April 2022
ML_SION2 = [real]
Default: ML_SION2 = ML_SION1
Description: This tag specifies the width [math]\displaystyle{ \sigma_\text{atom} }[/math] of the Gaussian functions used for broadening the atomic distributions of the angular descriptor [math]\displaystyle{ \rho^{(3)}_i(r) }[/math] within the machine learning force field method.
The angular descriptor is constructed from
[math]\displaystyle{ \rho_{i}^{(3)}\left(r,s,\theta\right) = \iint d\hat{\mathbf{r}} d\hat{\mathbf{s}} \delta\left(\hat{\mathbf{r}}\cdot\hat{\mathbf{s}} - \mathrm{cos}\theta\right) \sum\limits_{j=1}^{N_{a}} \sum\limits_{k \ne j}^{N_{a}} \rho_{ik} \left(r\hat{\mathbf{r}}\right) \rho_{ij} \left(s\hat{\mathbf{s}}\right), \quad \text{where} \quad \rho_{ij}\left(\mathbf{r}\right) = f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right) }[/math]
and [math]\displaystyle{ g\left(\mathbf{r}\right) }[/math] is the following approximation of the delta function:
[math]\displaystyle{ g\left(\mathbf{r}\right)=\frac{1}{\sqrt{2\sigma_{\mathrm{atom}}\pi}}\mathrm{exp}\left(-\frac{|\mathbf{r}|^{2}}{2\sigma_{\mathrm{atom}}^{2}}\right). }[/math]
The tag ML_SION2 sets the width [math]\displaystyle{ \sigma_\text{atom} }[/math] of the above Gaussian function (see this section for more details).
Tip: Our test calculations indicate that ML_SION1 = ML_SION2 results in an optimal training performance. Furthermore, a value of 0.5 was found to be a good default value for both. However, the best choice is system-dependent, careful testing may improve machine learning results. |
The unit of ML_SION2 is [math]\displaystyle{ \AA }[/math].
Related tags and articles
ML_LMLFF, ML_SION1, ML_RCUT1, ML_RCUT2, ML_MRB1, ML_MRB2