Category:Interface pinning: Difference between revisions
No edit summary |
No edit summary |
||
Line 31: | Line 31: | ||
The '''interface pinning''' method uses the <math>Np_zT</math> ensemble where the barostat only acts on the direction of the lattice that is perpendicular to the solid liquid interface. This uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions. | The '''interface pinning''' method uses the <math>Np_zT</math> ensemble where the barostat only acts on the direction of the lattice that is perpendicular to the solid liquid interface. This uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions. | ||
The following variables need to be set for the interface pinning method: | The following variables need to be set for the '''interface pinning''' method: | ||
*{{TAG|OFIELD_Q6_NEAR}}: This tag defines the near-fading distance <math>n</math>. | *{{TAG|OFIELD_Q6_NEAR}}: This tag defines the near-fading distance <math>n</math>. | ||
*{{TAG|OFIELD_Q6_FAR}}: This tag defines the far-fading distance <math>f</math>. | *{{TAG|OFIELD_Q6_FAR}}: This tag defines the far-fading distance <math>f</math>. |
Revision as of 15:58, 6 April 2022
<Interface pinning is a method for finding melting points from a molecular-dynamics simulation of a system where the liquid and the solid phase are in contact.
Theory
To prevent melting or freezing at constant pressure and constant temperature, a bias potential applies a penalty energy for deviations from the desired two-phase system.
The Steinhardt-Nelson order parameter [math]\displaystyle{ Q_6 }[/math] is used for discriminating the solid from the liquid phase and the bias potential is given by
- [math]\displaystyle{ U_\textrm{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - a\right)^2 }[/math]
where [math]\displaystyle{ Q_6({\mathbf{R}}) }[/math] is the [math]\displaystyle{ Q_6 }[/math] order parameter for the current configuration [math]\displaystyle{ \mathbf{R} }[/math] and [math]\displaystyle{ a }[/math] is the desired value of the order parameter close to the order parameter of the initial two-phase configuration.
With the bias potential enabled, the system can equilibrate while staying in the two-phase configuration. From the difference of the average order parameter [math]\displaystyle{ \langle Q_6 \rangle }[/math] in equilibrium and the desired order parameter [math]\displaystyle{ a }[/math] one can directly compute the difference of the chemical potential of the solid and the liquid phase:
- [math]\displaystyle{ N(\mu_\textrm{solid} - \mu_\textrm{liquid}) =\kappa (Q_{6 \textrm{solid}} - Q_{6 \textrm{liquid}}) (\langle Q_6 \rangle - a) }[/math]
where [math]\displaystyle{ N }[/math] is the number of atoms in the simulation.
It is preferable to simulate in the super-heated regime, as it is easier for the bias potential to prevent a system from melting than to prevent a system from freezing.
[math]\displaystyle{ Q_6(\mathbf{R}) }[/math] needs to be continuous for computing the forces on the atoms originating from the bias potential. We use a smooth fading function [math]\displaystyle{ w(r) }[/math] to weight each pair of atoms at distance [math]\displaystyle{ r }[/math] for the calculation of the [math]\displaystyle{ Q_6 }[/math] order parameter
- [math]\displaystyle{ w(r) = \left\{ \begin{array}{cl} 1 &\textrm{for} \,\, r\leq n \\ \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3} &\textrm{for} \,\, n\lt r\lt f \\ 0 &\textrm{for} \,\,f\leq r \end{array}\right. }[/math]
Here [math]\displaystyle{ n }[/math] and [math]\displaystyle{ f }[/math] are the near- and far-fading distances given in the INCAR file respectively. A good choice for the fading range can be made from the radial distribution function [math]\displaystyle{ g(r) }[/math] of the crystal phase. We recommend to use the distance where [math]\displaystyle{ g(r) }[/math] goes below 1 after the first peak as the near fading distance [math]\displaystyle{ n }[/math] and the distance where [math]\displaystyle{ g(r) }[/math] goes above 1 again before the second peak as the far fading distance [math]\displaystyle{ f }[/math]. [math]\displaystyle{ g(r) }[/math] should be low where the fading function has a high derivative to prevent spurious stress.
How to
The interface pinning method uses the [math]\displaystyle{ Np_zT }[/math] ensemble where the barostat only acts on the direction of the lattice that is perpendicular to the solid liquid interface. This uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions.
The following variables need to be set for the interface pinning method:
- OFIELD_Q6_NEAR: This tag defines the near-fading distance [math]\displaystyle{ n }[/math].
- OFIELD_Q6_FAR: This tag defines the far-fading distance [math]\displaystyle{ f }[/math].
- OFIELD_KAPPA: This tag defines the coupling strength [math]\displaystyle{ \kappa }[/math] of the bias potential.
- OFIELD_A: This tag defines the desired value of the order parameter [math]\displaystyle{ a }[/math].
The following is a sample INCAR file for interface pinning of sodium[1]:
TEBEG = 400 # temperature in K POTIM = 4 # timestep in fs IBRION = 0 # do MD ISIF = 3 # use Parrinello-Rahman barostat for the lattice MDALGO = 3 # use Langevin thermostat LANGEVIN_GAMMA = 1.0 # friction coef. for atomic DoFs for each species LANGEVIN_GAMMA_L = 3.0 # friction coef. for the lattice DoFs PMASS = 100 # mass for lattice DoFs LATTICE_CONSTRAINTS = F F T # fix x&y, release z lattice dynamics OFIELD_Q6_NEAR = 3.22 # fading distances for computing a continuous Q6 OFIELD_Q6_FAR = 4.384 # in Angstrom OFIELD_KAPPA = 500 # strength of bias potential in eV/(unit of Q)^2 OFIELD_A = 0.15 # desired value of the Q6 order parameter
References
This category currently contains no pages or media.