Category:Interface pinning: Difference between revisions
No edit summary |
No edit summary |
||
Line 34: | Line 34: | ||
<!-- is w(r) equivalent to (1 - t)^2(1 + 2t) with t = (r - n) / (f - n)? --> | <!-- is w(r) equivalent to (1 - t)^2(1 + 2t) with t = (r - n) / (f - n)? --> | ||
Here <math>n</math> and <math>f</math> are the near- and far-fading distances | Here <math>n</math> and <math>f</math> are the near- and far-fading distances, respectively. | ||
<!-- END REPHRASE --> | <!-- END REPHRASE --> | ||
The radial distribution function <math>g(r)</math> of the crystal phase yields a good choice for the fading range. | The radial distribution function <math>g(r)</math> of the crystal phase yields a good choice for the fading range. |
Revision as of 12:25, 7 April 2022
Interface pinning[1] is used to determine the melting point from a molecular-dynamics simulation of the interface between a liquid and a solid phase. The typical behavior of such a simulation is to freeze or melt, while the interface is pinned with a bias potential. This potential applies an energy penalty for deviations from the desired two-phase system. It is preferred simulating above the melting point because the bias potential prevents melting better than freezing.
The Steinhardt-Nelson[2] order parameter [math]\displaystyle{ Q_6 }[/math] discriminates between the solid and the liquid phase. With the bias potential
- [math]\displaystyle{ U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - A\right)^2 }[/math]
penalizes differences between the order parameter for the current configuration [math]\displaystyle{ Q_6({\mathbf{R}}) }[/math] and the one for the desired interface [math]\displaystyle{ A }[/math]. [math]\displaystyle{ \kappa }[/math] is an adjustable parameter determining the strength of the pinning.
Under the action of the bias potential, the system equilibrates to the desired two-phase configuration. An important observable is the difference between the average order parameter [math]\displaystyle{ \langle Q_6\rangle }[/math] in equilibrium and the desired order parameter [math]\displaystyle{ A }[/math]. This difference relates to the the chemical potentials of the solid [math]\displaystyle{ \mu_\text{solid} }[/math] and the liquid [math]\displaystyle{ \mu_\text{liquid} }[/math] phase
- [math]\displaystyle{ N(\mu_\text{solid} - \mu_\text{liquid}) = \kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - A) }[/math]
where [math]\displaystyle{ N }[/math] is the number of atoms in the simulation.
Computing the forces requires a differentiable [math]\displaystyle{ Q_6(\mathbf{R}) }[/math]. We use a smooth fading function [math]\displaystyle{ w(r) }[/math] to weight each pair of atoms at distance [math]\displaystyle{ r }[/math] for the calculation of the [math]\displaystyle{ Q_6(\mathbf{R},w) }[/math] order parameter
- [math]\displaystyle{ w(r) = \left\{ \begin{array}{cl} 1 &\textrm{for} \,\, r\leq n \\ \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3} &\textrm{for} \,\, n\lt r\lt f \\ 0 &\textrm{for} \,\,f\leq r \end{array}\right. }[/math]
Here [math]\displaystyle{ n }[/math] and [math]\displaystyle{ f }[/math] are the near- and far-fading distances, respectively.
The radial distribution function [math]\displaystyle{ g(r) }[/math] of the crystal phase yields a good choice for the fading range.
To prevent spurious stress, [math]\displaystyle{ g(r) }[/math] should be small where the derivative of [math]\displaystyle{ w(r) }[/math] is large.
Set the near fading distance [math]\displaystyle{ n }[/math] to the distance where [math]\displaystyle{ g(r) }[/math] goes below 1 after the first peak.
Set the far fading distance [math]\displaystyle{ f }[/math] to the distance where [math]\displaystyle{ g(r) }[/math] goes above 1 again before the second peak.
How to
Interface pinning uses the [math]\displaystyle{ Np_zT }[/math] ensemble where the barostat only acts along the [math]\displaystyle{ z }[/math] direction. This uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions. The solid-liquid interface must be in the [math]\displaystyle{ x }[/math]-[math]\displaystyle{ y }[/math] plane perpendicular to the action of the barostat.
Set the following tags for the interface pinning method:
- OFIELD_Q6_NEAR
- Defines the near-fading distance [math]\displaystyle{ n }[/math].
- OFIELD_Q6_FAR
- Defines the far-fading distance [math]\displaystyle{ f }[/math].
- OFIELD_KAPPA
- Defines the coupling strength [math]\displaystyle{ \kappa }[/math] of the bias potential.
- OFIELD_A
- Defines the desired value of the order parameter [math]\displaystyle{ A }[/math].
The following example INCAR file calculates the interface pinning in sodium[1]:
TEBEG = 400 # temperature in K POTIM = 4 # timestep in fs IBRION = 0 # run molecular dynamics ISIF = 3 # use Parrinello-Rahman barostat for the lattice MDALGO = 3 # use Langevin thermostat LANGEVIN_GAMMA_L = 3.0 # friction coefficient for the lattice degree of freedoms (DoF) LANGEVIN_GAMMA = 1.0 # friction coefficient for atomic DoFs for each species PMASS = 100 # mass for lattice DoFs LATTICE_CONSTRAINTS = F F T # fix x-y plane, release z lattice dynamics OFIELD_Q6_NEAR = 3.22 # near fading distance for function w(r) in Angstrom OFIELD_Q6_FAR = 4.384 # far fading distance for function w(r) in Angstrom OFIELD_KAPPA = 500 # strength of bias potential in eV/(unit of Q)^2 OFIELD_A = 0.15 # desired value of the Q6 order parameter
References
This category currently contains no pages or media.