LDAUTYPE: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 25: Line 25:
:The unscreened e-e interaction ''U''<sub>&gamma;<sub>1</sub></sub><sub>&gamma;<sub>3</sub></sub><sub>&gamma;<sub>2</sub></sub><sub>&gamma;<sub>4</sub></sub> can be written in terms of the Slater integrals <math>F^0</math>, <math>F^2</math>, <math>F^4</math>, and <math>F^6</math> (f-electrons). Using values for the Slater integrals calculated from atomic orbitals, however, would lead to a large overestimation of the true e-e interaction, since in solids the Coulomb interaction is screened (especially <math>F^0</math>).
:The unscreened e-e interaction ''U''<sub>&gamma;<sub>1</sub></sub><sub>&gamma;<sub>3</sub></sub><sub>&gamma;<sub>2</sub></sub><sub>&gamma;<sub>4</sub></sub> can be written in terms of the Slater integrals <math>F^0</math>, <math>F^2</math>, <math>F^4</math>, and <math>F^6</math> (f-electrons). Using values for the Slater integrals calculated from atomic orbitals, however, would lead to a large overestimation of the true e-e interaction, since in solids the Coulomb interaction is screened (especially <math>F^0</math>).


:In practice these integrals are therefore often treated as parameters, i.e., adjusted to reach agreement with experiment in some sense: equilibrium volume, magnetic moment, band gap, structure. They are normally specified in terms of the effective on site Coulomb- and exchange parameters, ''U'' and ''J'' ({{TAG|LDAUU}} and {{TAG|LDAUJ}}, respectively). ''U'' and ''J'' are sometimes extracted from constrained-LSDA calculations.
:In practice these integrals are therefore often treated as parameters, ''i.e.'', adjusted to reach agreement with experiment in some sense: equilibrium volume, magnetic moment, band gap, structure. They are normally specified in terms of the effective on site Coulomb- and exchange parameters, ''U'' and ''J'' ({{TAG|LDAUU}} and {{TAG|LDAUJ}}, respectively). ''U'' and ''J'' are sometimes extracted from constrained-LSDA calculations.


:These translate into values for the Slater integrals in the following way (as implemented in VASP at the moment):
:These translate into values for the Slater integrals in the following way (as implemented in VASP at the moment):

Revision as of 20:17, 1 March 2011

LDAUTYPE = 1 | 2 | 4
Default: LDAUTYPE = 2 

Description: LDAUTYPE specifies which type of L(S)DA+U approach will be used.


  • LDAUTYPE=1: The rotationally invariant LSDA+U introduced by Liechtenstein et al.[1]
[math]\displaystyle{ E_{\rm HF}=\frac{1}{2} \sum_{\{\gamma\}} (U_{\gamma_1\gamma_3\gamma_2\gamma_4} - U_{\gamma_1\gamma_3\gamma_4\gamma_2}){ \hat n}_{\gamma_1\gamma_2}{\hat n}_{\gamma_3\gamma_4} }[/math]
and is determined by the PAW on site occupancies
[math]\displaystyle{ {\hat n}_{\gamma_1\gamma_2} = \langle \Psi^{s_2} \mid m_2 \rangle \langle m_1 \mid \Psi^{s_1} \rangle }[/math]
and the (unscreened) on site electron-electron interaction
[math]\displaystyle{ U_{\gamma_1\gamma_3\gamma_2\gamma_4}= \langle m_1 m_3 \mid \frac{1}{|\mathbf{r}-\mathbf{r}^\prime|} \mid m_2 m_4 \rangle \delta_{s_1 s_2} \delta_{s_3 s_4} }[/math]
where |m⟩ are real spherical harmonics of angular momentum L=LDAUL.
The unscreened e-e interaction Uγ1γ3γ2γ4 can be written in terms of the Slater integrals [math]\displaystyle{ F^0 }[/math], [math]\displaystyle{ F^2 }[/math], [math]\displaystyle{ F^4 }[/math], and [math]\displaystyle{ F^6 }[/math] (f-electrons). Using values for the Slater integrals calculated from atomic orbitals, however, would lead to a large overestimation of the true e-e interaction, since in solids the Coulomb interaction is screened (especially [math]\displaystyle{ F^0 }[/math]).
In practice these integrals are therefore often treated as parameters, i.e., adjusted to reach agreement with experiment in some sense: equilibrium volume, magnetic moment, band gap, structure. They are normally specified in terms of the effective on site Coulomb- and exchange parameters, U and J (LDAUU and LDAUJ, respectively). U and J are sometimes extracted from constrained-LSDA calculations.
These translate into values for the Slater integrals in the following way (as implemented in VASP at the moment):
[math]\displaystyle{ L\; }[/math] [math]\displaystyle{ F^0\; }[/math] [math]\displaystyle{ F^2\; }[/math] [math]\displaystyle{ F^4\; }[/math] [math]\displaystyle{ F^6\; }[/math]
[math]\displaystyle{ 1\; }[/math] [math]\displaystyle{ U\; }[/math] [math]\displaystyle{ 5J\; }[/math] - -
[math]\displaystyle{ 2\; }[/math] [math]\displaystyle{ U\; }[/math] [math]\displaystyle{ \frac{14}{1+0.625}J }[/math] [math]\displaystyle{ 0.625 F^2\; }[/math] -
[math]\displaystyle{ 3\; }[/math] [math]\displaystyle{ U\; }[/math] [math]\displaystyle{ \frac{6435}{286+195 \cdot 0.668+250 \cdot 0.494}J }[/math] [math]\displaystyle{ 0.668 F^2\; }[/math] [math]\displaystyle{ 0.494 F^2\; }[/math]
The essence of the L(S)DA+U method consists of the assumption that one may now write the total energy as:
[math]\displaystyle{ E_{\mathrm{tot}}(n,\hat n)=E_{\mathrm{DFT}}(n)+E_{\mathrm{HF}}(\hat n)-E_{\mathrm{dc}}(\hat n) }[/math]
where the Hartree-Fock like interaction replaces the L(S)DA on site due to the fact that one subtracts a double counting energy ([math]\displaystyle{ E_{\mathrm{dc}} }[/math]) which supposedly equals the on site L(S)DA contribution to the total energy,
[math]\displaystyle{ E_{\mathrm{dc}}(\hat n) = \frac{U}{2} {\hat n}_{\mathrm{tot}}({\hat n}_{\mathrm{tot}}-1) - \frac{J}{2} \sum_\sigma {\hat n}^\sigma_{\mathrm{tot}}({\hat n}^\sigma_{\mathrm{tot}}-1). }[/math]
  • LDAUTYPE=2: The simplified (rotationally invariant) approach to the LSDA+U, introduced by Dudarev et al.[2]
  • LDAUTYPE=4: same as LDAUTYPE=1, but LDA+U instead of LSDA+U (i.e. no LSDA exchange splitting).

Related Tags and Sections

LDAU, LDAUL, LDAUU, LDAUJ, LDAUPRINT

References


Contents