AGGAC: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
Description: {{TAG|AGGAC}} is a parameter that multiplies the gradient correction in the GGA correlation functional. | Description: {{TAG|AGGAC}} is a parameter that multiplies the gradient correction in the GGA correlation functional. | ||
---- | ---- | ||
{{TAG|AGGAC}} can be used as the fraction of gradient correction in the GGA correlation in a Hartree-Fock/ | {{TAG|AGGAC}} can be used as the fraction of gradient correction in the GGA correlation in a Hartree-Fock/DFT hybrid functional. | ||
== Related tags and articles == | == Related tags and articles == |
Revision as of 21:32, 15 February 2023
AGGAC = [real]
Default: AGGAC | = 1.0 | if LHFCALC[math]\displaystyle{ = }[/math].FALSE. or AEXX[math]\displaystyle{ \neq }[/math]1.0 |
= 0.0 | if LHFCALC[math]\displaystyle{ = }[/math].TRUE. and AEXX[math]\displaystyle{ = }[/math]1.0 |
Description: AGGAC is a parameter that multiplies the gradient correction in the GGA correlation functional.
AGGAC can be used as the fraction of gradient correction in the GGA correlation in a Hartree-Fock/DFT hybrid functional.
Related tags and articles
AEXX, ALDAX, ALDAC, AGGAX, AMGGAX, AMGGAC, LHFCALC, List of hybrid functionals