LCALCEPS: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 31: Line 31:
from the [[Berry_phases_and_finite_electric_fields#Self-consistent_response_to_finite_electric_fields|self-consistent response to a finite electric field]] <span style="font-size:16pt">''&epsilon;''</span>.
from the [[Berry_phases_and_finite_electric_fields#Self-consistent_response_to_finite_electric_fields|self-consistent response to a finite electric field]] <span style="font-size:16pt">''&epsilon;''</span>.
In this case, the "response" of the system is the change in the polarization '''P''', the Hellmann-Feynman forces '''F''', and the stress tensor &sigma;.
In this case, the "response" of the system is the change in the polarization '''P''', the Hellmann-Feynman forces '''F''', and the stress tensor &sigma;.
To this end VASP will perform essentially three successive calculations, with:
{{TAG|EFIELD_PEAD}}= <span style="font-size:16pt">''&epsilon;''</span><sub>x</sub> 0 0
{{TAG|EFIELD_PEAD}}= 0 <span style="font-size:16pt">''&epsilon;''</span><sub>y</sub> 0
{{TAG|EFIELD_PEAD}}= 0 0 <span style="font-size:16pt">''&epsilon;''</span><sub>z</sub>
where, by default, VASP chooses <span style="font-size:16pt">''&epsilon;''</span><sub>x</sub>=<span style="font-size:16pt">''&epsilon;''</span><sub>y</sub>=<span style="font-size:16pt">''&epsilon;''</span><sub>z</sub>=0.01 eV/&Aring;.


== Related Tags and Sections ==
== Related Tags and Sections ==

Revision as of 14:18, 19 March 2011

LCALCEPS = .TRUE. | .FALSE.
Default: LCALCEPS = .FALSE. 

Description: for LCALCEPS=.TRUE. the macroscopic ion-clamped static dielectric tensor, Born effective charge tensors, and the ion-clamped piezoelectric tensor of the system are determined from the response to finite electric fields.


For LCALCEPS=.TRUE., VASP calculates the ion-clamped static dielectric tensor

[math]\displaystyle{ \epsilon^\infty_{ij}=\delta_{ij}+ \frac{4\pi}{\epsilon_0}\frac{\partial P_i}{\partial \mathcal{E}_j}, \qquad {i,j=x,y,z} }[/math]

the Born effective charge tensors

[math]\displaystyle{ Z^*_{ij}=\frac{\Omega}{e}\frac{\partial P_i}{\partial u_j} =\frac{1}{e}\frac{\partial F_i}{\partial \mathcal{E}_j}, \qquad {i,j=x,y,z} }[/math]

and the ion-clamped piezoelectric tensor of the system

[math]\displaystyle{ e^{(0)}_{ij}=-\frac{\partial \sigma_i}{\partial \mathcal{E}_j}, \qquad {i=xx, yy, zz, xy, yz, zx}\quad{j=x,y,z} }[/math]

from the self-consistent response to a finite electric field ε. In this case, the "response" of the system is the change in the polarization P, the Hellmann-Feynman forces F, and the stress tensor σ.

To this end VASP will perform essentially three successive calculations, with:

EFIELD_PEAD= εx 0 0
EFIELD_PEAD= 0 εy 0
EFIELD_PEAD= 0 0 εz 

where, by default, VASP chooses εx=εy=εz=0.01 eV/Å.

Related Tags and Sections

LEPSILON, LCALCPOL, EFIELD_PEAD, LPEAD, IPEAD, LBERRY, IGPAR, NPPSTR, DIPOL, Berry phases and finite electric fields


Contents