ELPH SELFEN NW: Difference between revisions
(Add availability notice) |
No edit summary |
||
| Line 9: | Line 9: | ||
The electron self-energy, <math>\Sigma_{n \mathbf{k}}(\omega)</math>, depends on the frequency <math>\omega</math> (or energy <math>\hbar \omega</math>). | The electron self-energy, <math>\Sigma_{n \mathbf{k}}(\omega)</math>, depends on the frequency <math>\omega</math> (or energy <math>\hbar \omega</math>). | ||
{{TAG|ELPH_SELFEN_NW}} controls the number and location of frequencies when computing the self-energy in the following way: | {{TAG|ELPH_SELFEN_NW}} controls the number and location of frequencies when computing the self-energy in the following way: | ||
; {{ | ; {{TAG|ELPH_SELFEN_NW|0|op=>}} | ||
: The self-energy is computed at {{TAG|ELPH_SELFEN_NW}} equally spaced energies between <math>\varepsilon_{n \mathbf{k}} - \frac{1}{2} E^{\text{W}}</math> and <math>\varepsilon_{n \mathbf{k}} + \frac{1}{2} E^{\text{W}}</math>. The interval is centered around each Kohn-Sham eigenvalue, <math>\varepsilon_{n \mathbf{k}}</math>, and its width, <math>E^{\text{W}}</math>, is controlled via {{TAG|ELPH_SELFEN_WRANGE}}. If {{TAG|ELPH_SELFEN_NW}} is an even number, it is automatically increased by one so that the center-most energy in each interval always coincides with the corresponding Kohn-Sham eigenvalue. | : The self-energy is computed at {{TAG|ELPH_SELFEN_NW}} equally spaced energies between <math>\varepsilon_{n \mathbf{k}} - \frac{1}{2} E^{\text{W}}</math> and <math>\varepsilon_{n \mathbf{k}} + \frac{1}{2} E^{\text{W}}</math>. The interval is centered around each Kohn-Sham eigenvalue, <math>\varepsilon_{n \mathbf{k}}</math>, and its width, <math>E^{\text{W}}</math>, is controlled via {{TAG|ELPH_SELFEN_WRANGE}}. If {{TAG|ELPH_SELFEN_NW}} is an even number, it is automatically increased by one so that the center-most energy in each interval always coincides with the corresponding Kohn-Sham eigenvalue. | ||
; {{ | ; {{TAG|ELPH_SELFEN_NW|0|op=<}} | ||
: The self-energy is computed at |{{TAG|ELPH_SELFEN_NW}}| equally spaced energies between <math>\varepsilon^{\text{min}}_{\mathbf{k}} - \frac{1}{2} E^{\text{W}}</math> and <math>\varepsilon^{\text{max}}_{\mathbf{k}} + \frac{1}{2} E^{\text{W}}</math>, where <math>\varepsilon^{\text{min}}_{\mathbf{k}}</math> and <math>\varepsilon^{\text{max}}_{\mathbf{k}}</math> are the minimum and maximum Kohn-Sham eigenvalues of the calculation, respectively. Once again, <math>E^{\text{W}}</math> is controlled via {{TAG|ELPH_SELFEN_WRANGE}} and allows to extend the interval in both directions. | : The self-energy is computed at |{{TAG|ELPH_SELFEN_NW}}| equally spaced energies between <math>\varepsilon^{\text{min}}_{\mathbf{k}} - \frac{1}{2} E^{\text{W}}</math> and <math>\varepsilon^{\text{max}}_{\mathbf{k}} + \frac{1}{2} E^{\text{W}}</math>, where <math>\varepsilon^{\text{min}}_{\mathbf{k}}</math> and <math>\varepsilon^{\text{max}}_{\mathbf{k}}</math> are the minimum and maximum Kohn-Sham eigenvalues of the calculation, respectively. Once again, <math>E^{\text{W}}</math> is controlled via {{TAG|ELPH_SELFEN_WRANGE}} and allows to extend the interval in both directions. | ||
Latest revision as of 08:06, 24 October 2025
ELPH_SELFEN_NW = [integer]
Default: ELPH_SELFEN_NW = 1
Description: Number of energies to use when computing the phonon-induced electron self-energy.
| Mind: Available as of VASP 6.5.0 |
The electron self-energy, [math]\displaystyle{ \Sigma_{n \mathbf{k}}(\omega) }[/math], depends on the frequency [math]\displaystyle{ \omega }[/math] (or energy [math]\displaystyle{ \hbar \omega }[/math]). ELPH_SELFEN_NW controls the number and location of frequencies when computing the self-energy in the following way:
ELPH_SELFEN_NW > 0- The self-energy is computed at ELPH_SELFEN_NW equally spaced energies between [math]\displaystyle{ \varepsilon_{n \mathbf{k}} - \frac{1}{2} E^{\text{W}} }[/math] and [math]\displaystyle{ \varepsilon_{n \mathbf{k}} + \frac{1}{2} E^{\text{W}} }[/math]. The interval is centered around each Kohn-Sham eigenvalue, [math]\displaystyle{ \varepsilon_{n \mathbf{k}} }[/math], and its width, [math]\displaystyle{ E^{\text{W}} }[/math], is controlled via ELPH_SELFEN_WRANGE. If ELPH_SELFEN_NW is an even number, it is automatically increased by one so that the center-most energy in each interval always coincides with the corresponding Kohn-Sham eigenvalue.
ELPH_SELFEN_NW < 0- The self-energy is computed at |ELPH_SELFEN_NW| equally spaced energies between [math]\displaystyle{ \varepsilon^{\text{min}}_{\mathbf{k}} - \frac{1}{2} E^{\text{W}} }[/math] and [math]\displaystyle{ \varepsilon^{\text{max}}_{\mathbf{k}} + \frac{1}{2} E^{\text{W}} }[/math], where [math]\displaystyle{ \varepsilon^{\text{min}}_{\mathbf{k}} }[/math] and [math]\displaystyle{ \varepsilon^{\text{max}}_{\mathbf{k}} }[/math] are the minimum and maximum Kohn-Sham eigenvalues of the calculation, respectively. Once again, [math]\displaystyle{ E^{\text{W}} }[/math] is controlled via ELPH_SELFEN_WRANGE and allows to extend the interval in both directions.