Constrained molecular dynamics: Difference between revisions
No edit summary |
|||
| Line 34: | Line 34: | ||
<div id="Slowgro"></div> | <div id="Slowgro"></div> | ||
=== Constrained molecular dynamics === | |||
For a description of constrained molecular dynamics see {{TAG|Constrained molecular dynamics}}. | |||
* For a constrained molecular dynamics run with Andersen thermostat, one has to: | |||
#Set the standard MD-related tags: {{TAG|IBRION}}=0, {{TAG|TEBEG}}, {{TAG|POTIM}}, and {{TAG|NSW}} | |||
#Set {{TAG|MDALGO}}=1, and choose an appropriate setting for {{TAG|ANDERSEN_PROB}} | |||
#Define geometric constraints in the {{FILE|ICONST}}-file, and set the STATUS parameter for the constrained coordinates to 0 | |||
#When the free-energy gradient is to be computed, set {{TAG|LBLUEOUT}}=.TRUE. | |||
== References == | == References == | ||
[[Category:Advanced molecular-dynamics sampling]][[Category:Theory]] | [[Category:Advanced molecular-dynamics sampling]][[Category:Theory]] | ||
Revision as of 12:42, 21 October 2025
Constrained molecular dynamics is performed using the SHAKE[1] algorithm. In this algorithm, the Lagrangian for the system [math]\displaystyle{ \mathcal{L} }[/math] is extended as follows:
- [math]\displaystyle{ \mathcal{L}^*(\mathbf{q,\dot{q}}) = \mathcal{L}(\mathbf{q,\dot{q}}) + \sum_{i=1}^{r} \lambda_i \sigma_i(q), }[/math]
where the summation is over r geometric constraints, [math]\displaystyle{ \mathcal{L}^* }[/math] is the Lagrangian for the extended system, and λi is a Lagrange multiplier associated with a geometric constraint σi:
- [math]\displaystyle{ \sigma_i(q) = \xi_i({q})-\xi_i \; }[/math]
with ξi(q) being a geometric parameter and ξi is the value of ξi(q) fixed during the simulation.
In the SHAKE algorithm, the Lagrange multipliers λi are determined in the iterative procedure:
- Perform a standard MD step (leap-frog algorithm):
- [math]\displaystyle{ v^{t+{\Delta}t/2}_i = v^{t-{\Delta}t/2}_i + \frac{a^{t}_i}{m_i} {\Delta}t }[/math]
- [math]\displaystyle{ q^{t+{\Delta}t}_i = q^{t}_i + v^{t+{\Delta}t/2}_i{\Delta}t }[/math]
- Use the new positions q(t+Δt) to compute Lagrange multipliers for all constraints:
- [math]\displaystyle{ {\lambda}_k= \frac{1}{{\Delta}t^2} \frac{\sigma_k(q^{t+{\Delta}t})}{\sum_{i=1}^N m_i^{-1} \bigtriangledown_i{\sigma}_k(q^{t}) \bigtriangledown_i{\sigma}_k(q^{t+{\Delta}t})} }[/math]
- Update the velocities and positions by adding a contribution due to restoring forces (proportional to λk):
- [math]\displaystyle{ v^{t+{\Delta}t/2}_i = v^{t-{\Delta}t/2}_i + \left( a^{t}_i-\sum_k \frac{{\lambda}_k}{m_i} \bigtriangledown_i{\sigma}_k(q^{t}) \right ) {\Delta}t }[/math]
- [math]\displaystyle{ q^{t+{\Delta}t}_i = q^{t}_i + v^{t+{\Delta}t/2}_i{\Delta}t }[/math]
- repeat steps 2-4 until either |σi(q)| are smaller than a predefined tolerance (determined by SHAKETOL), or the number of iterations exceeds SHAKEMAXITER.
Constrained molecular dynamics
For a description of constrained molecular dynamics see Constrained molecular dynamics.
- For a constrained molecular dynamics run with Andersen thermostat, one has to:
- Set the standard MD-related tags: IBRION=0, TEBEG, POTIM, and NSW
- Set MDALGO=1, and choose an appropriate setting for ANDERSEN_PROB
- Define geometric constraints in the ICONST-file, and set the STATUS parameter for the constrained coordinates to 0
- When the free-energy gradient is to be computed, set LBLUEOUT=.TRUE.