ELPH SCATTERING APPROX: Difference between revisions
No edit summary |
No edit summary |
||
| (8 intermediate revisions by 2 users not shown) | |||
| Line 12: | Line 12: | ||
== Options to select == | == Options to select == | ||
;{{ | ;{{TAG|ELPH_SCATTERING_APPROX|CRTA}} - <u>C</u>onstant <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation | ||
:The relaxation time is assumed constant. It needs to be specified via {{TAG|TRANSPORT_RELAXATION_TIME}}. In this case, the computation of electron-phonon matrix elements is skipped entirely, which is a huge performance boost compared to the other relaxation-time approximations. | :The relaxation time is assumed constant. It needs to be specified via {{TAG|TRANSPORT_RELAXATION_TIME}}. In this case, the computation of electron-phonon matrix elements is skipped entirely, which is a huge performance boost compared to the other relaxation-time approximations. | ||
{{NB|warning|While the CRTA can be a reasonable approximation for metals, it will generally fail for insulators.}} | {{NB|warning|While the CRTA can be a reasonable approximation for metals, it will generally fail for insulators.}} | ||
;{{ | ;{{TAG|ELPH_SCATTERING_APPROX|SERTA}} - <u>S</u>elf-<u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation | ||
:Computes the relaxation time from the imaginary part of the Fan self-energy, evaluated on the electronic eigenenergy: | :Computes the relaxation time from the imaginary part of the Fan self-energy, evaluated on the electronic eigenenergy: | ||
:<math> | :<math> | ||
\frac{1}{\tau^{\mathrm{SERTA}}_{n\mathbf{k}}} = \frac{2\pi}{\hbar} \sum_{n'\nu\mathbf{k}'} w_{n\mathbf{k},n'\mathbf{k}'} \, |g^{\nu}_{n\mathbf{k},n'\mathbf{k}'}|^2 \left[ (n_{\nu\mathbf{q}} + 1 - f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} - \hbar\omega_{\nu\mathbf{q}}) + (n_{\nu\mathbf{q}} + f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} + \hbar\omega_{\nu\mathbf{q}}) \right] | \frac{1}{\tau^{\mathrm{SERTA}}_{n\mathbf{k}}} = \frac{2\pi}{\hbar} \sum_{n'\nu\mathbf{k}'} w_{n\mathbf{k},n'\mathbf{k}'} \, |g^{\nu}_{n\mathbf{k},n'\mathbf{k}'}|^2 \left[ (n_{\nu\mathbf{q}} + 1 - f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} - \hbar\omega_{\nu\mathbf{q}}) + (n_{\nu\mathbf{q}} + f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} + \hbar\omega_{\nu\mathbf{q}}) \right] | ||
</math> | </math> | ||
: | :where <math>{\tau^{\mathrm{SERTA}}_{n\mathbf{k}}}</math> is the relaxation time (or scattering time, or lifetime) for state <math>(n,\mathbf{k})</math>, <math>w_{n\mathbf{k},n'\mathbf{k}'}</math> is the scattering weight, <math>g^{\nu}_{n\mathbf{k},n'\mathbf{k}'}</math> is the electron-phonon coupling matrix element, <math>f_{n\mathbf{k}}</math> is the population of the electronic state (Fermi-Dirac distribution), <math>n_{\nu\mathbf{q}}</math> is the population of the phononic state (Bose-Einstein distribution), <math>\varepsilon_{n\mathbf{k}}</math> is the energy of an electron band, <math>\omega_{\nu\mathbf{q}}</math> is the phonon frequency, and <math>\delta</math> is the Dirac delta function. | ||
:For SERTA, the scattering weight is: | |||
:<math> | :<math> | ||
w_{n\mathbf{k},n'\mathbf{k}'} = 1 | w_{n\mathbf{k},n'\mathbf{k}'} = 1 | ||
</math> | </math> | ||
;{{ | ;{{TAG|ELPH_SCATTERING_APPROX|ERTA_LAMDBA}} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation) | ||
:Applies an energy-projected weight scaled by mean-free path: | :Applies an energy-projected weight scaled by mean-free path (where <math>\mu</math> is the [[Chemical_potential_in_electron-phonon_interactions|chemical potential]]): | ||
:<math> | |||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|} \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|\right) | |||
</math> | |||
{{NB|warning|The formula above is correct and used from the next release of VASP onwards. In VASP 6.5.0 and 6.5.1, the following formula is used: | |||
:<math> | :<math> | ||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|}\right) \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right| | w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|}\right) \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right| | ||
</math> | </math> | ||
}} | |||
{{ | ;{{TAG|ELPH_SCATTERING_APPROX|ERTA_TAU }} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation) | ||
:<math> | :<math> | ||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| | w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2} \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|\right) | ||
</math> | </math> | ||
{{NB|warning|The formula above is correct and used from the next release of VASP onwards. In VASP 6.5.0 and 6.5.1, the following formula is used: | |||
:<math> | :<math> | ||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2}\right) \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right| | w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2}\right) \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right| | ||
</math> | </math> | ||
}} | |||
;{{TAG|ELPH_SCATTERING_APPROX|MRTA_LAMDBA}} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation) | |||
}} | |||
;{{ | |||
:<math> | :<math> | ||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|}\right) | w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|}\right) | ||
</math> | </math> | ||
;{{ | ;{{TAG|ELPH_SCATTERING_APPROX|MRTA_TAU }} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation) | ||
:<math> | :<math> | ||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2}\right) | w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2}\right) | ||
| Line 59: | Line 59: | ||
==Related tags and articles== | ==Related tags and articles== | ||
* [[Transport coefficients including electron-phonon scattering|Transport calculations]] | * [[Transport coefficients including electron-phonon scattering|Transport calculations]] | ||
* [[Electronic transport coefficients]] | |||
* [[Electron-phonon accumulators]] | * [[Electron-phonon accumulators]] | ||
* {{TAG|ELPH_RUN}} | * {{TAG|ELPH_RUN}} | ||
* {{TAG|ELPH_TRANSPORT}} | |||
* {{TAG|ELPH_TRANSPORT_DRIVER}} | |||
* {{TAG|TRANSPORT_RELAXATION_TIME}} | * {{TAG|TRANSPORT_RELAXATION_TIME}} | ||
[[Category:INCAR tag]][[Category:Electron-phonon_interactions]] | [[Category:INCAR tag]][[Category:Electron-phonon_interactions]] | ||
Latest revision as of 08:05, 24 October 2025
ELPH_SCATTERING_APPROX = [string]
Default: ELPH_SCATTERING_APPROX = SERTA MRTA_LAMBDA
Description: Select which type of approximation is used to compute the electron scattering lifetimes due to electron-phonon coupling
| Mind: Available as of VASP 6.5.0 |
There are different approximations to compute the electronic lifetimes due to electron-phonon scattering. Each of these can lead to significantly different transport coefficients. It is possible to select more than one approximation in ELPH_SCATTERING_APPROX. In this case, additional electron-phonon accumulators are created for each scattering approximation.
Options to select
ELPH_SCATTERING_APPROX = CRTA- Constant Relaxation-Time Approximation- The relaxation time is assumed constant. It needs to be specified via TRANSPORT_RELAXATION_TIME. In this case, the computation of electron-phonon matrix elements is skipped entirely, which is a huge performance boost compared to the other relaxation-time approximations.
| Warning: While the CRTA can be a reasonable approximation for metals, it will generally fail for insulators. |
ELPH_SCATTERING_APPROX = SERTA- Self-Energy Relaxation-Time Approximation- Computes the relaxation time from the imaginary part of the Fan self-energy, evaluated on the electronic eigenenergy:
- [math]\displaystyle{ \frac{1}{\tau^{\mathrm{SERTA}}_{n\mathbf{k}}} = \frac{2\pi}{\hbar} \sum_{n'\nu\mathbf{k}'} w_{n\mathbf{k},n'\mathbf{k}'} \, |g^{\nu}_{n\mathbf{k},n'\mathbf{k}'}|^2 \left[ (n_{\nu\mathbf{q}} + 1 - f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} - \hbar\omega_{\nu\mathbf{q}}) + (n_{\nu\mathbf{q}} + f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} + \hbar\omega_{\nu\mathbf{q}}) \right] }[/math]
- where [math]\displaystyle{ {\tau^{\mathrm{SERTA}}_{n\mathbf{k}}} }[/math] is the relaxation time (or scattering time, or lifetime) for state [math]\displaystyle{ (n,\mathbf{k}) }[/math], [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} }[/math] is the scattering weight, [math]\displaystyle{ g^{\nu}_{n\mathbf{k},n'\mathbf{k}'} }[/math] is the electron-phonon coupling matrix element, [math]\displaystyle{ f_{n\mathbf{k}} }[/math] is the population of the electronic state (Fermi-Dirac distribution), [math]\displaystyle{ n_{\nu\mathbf{q}} }[/math] is the population of the phononic state (Bose-Einstein distribution), [math]\displaystyle{ \varepsilon_{n\mathbf{k}} }[/math] is the energy of an electron band, [math]\displaystyle{ \omega_{\nu\mathbf{q}} }[/math] is the phonon frequency, and [math]\displaystyle{ \delta }[/math] is the Dirac delta function.
- For SERTA, the scattering weight is:
- [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = 1 }[/math]
ELPH_SCATTERING_APPROX = ERTA_LAMDBA- Energy Relaxation-Time Approximation (mean-free path approximation)- Applies an energy-projected weight scaled by mean-free path (where [math]\displaystyle{ \mu }[/math] is the chemical potential):
- [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|} \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|\right) }[/math]
Warning: The formula above is correct and used from the next release of VASP onwards. In VASP 6.5.0 and 6.5.1, the following formula is used:
|
ELPH_SCATTERING_APPROX = ERTA_TAU- Energy Relaxation-Time Approximation (lifetime approximation)- [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2} \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|\right) }[/math]
Warning: The formula above is correct and used from the next release of VASP onwards. In VASP 6.5.0 and 6.5.1, the following formula is used:
|
ELPH_SCATTERING_APPROX = MRTA_LAMDBA- Momentum Relaxation-Time Approximation (mean-free path approximation)- [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|}\right) }[/math]
ELPH_SCATTERING_APPROX = MRTA_TAU- Momentum Relaxation-Time Approximation (lifetime approximation)- [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2}\right) }[/math]