ELPH SCATTERING APPROX: Difference between revisions

From VASP Wiki
(Improve page and add categories, related info)
No edit summary
 
(13 intermediate revisions by 3 users not shown)
Line 3: Line 3:


Description: Select which type of approximation is used to compute the electron scattering lifetimes due to electron-phonon coupling
Description: Select which type of approximation is used to compute the electron scattering lifetimes due to electron-phonon coupling
{{Available|6.5.0}}


----
----
There are different approximations to compute the electronic lifetimes due to electron-phonon scattering. Each of these can lead to significantly different transport coefficients.
There are different approximations to compute the electronic lifetimes due to electron-phonon scattering.
Each of these can lead to significantly different transport coefficients.
It is possible to select more than one approximation in {{TAG|ELPH_SCATTERING_APPROX}}.
In this case, additional [[Electron-phonon accumulators | electron-phonon accumulators]] are created for each scattering approximation.


== Options to select ==
== Options to select ==
;{{TAGO|ELPH_SCATTERING_APPROX|CRTA}} - <u>C</u>onstant <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation
;{{TAG|ELPH_SCATTERING_APPROX|CRTA}} - <u>C</u>onstant <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation
:The relaxation time is assumed constant. It needs to be specified via {{TAG|TRANSPORT_RELAXATION_TIME}}. In this case, the computation of electron-phonon matrix elements is skipped entirely, which is a huge performance boost compared to the other relaxation-time approximations.
:The relaxation time is assumed constant. It needs to be specified via {{TAG|TRANSPORT_RELAXATION_TIME}}. In this case, the computation of electron-phonon matrix elements is skipped entirely, which is a huge performance boost compared to the other relaxation-time approximations.
{{NB|warning|While the CRTA can be a reasonable approximation for metals, it will generally fail for insulators.}}
{{NB|warning|While the CRTA can be a reasonable approximation for metals, it will generally fail for insulators.}}


;{{TAGO|ELPH_SCATTERING_APPROX|SERTA}} - <u>S</u>elf-<u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation
;{{TAG|ELPH_SCATTERING_APPROX|SERTA}} - <u>S</u>elf-<u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation
:Calculates the relaxation time from the imaginary part of the electron self-energy.
:Computes the relaxation time from the imaginary part of the Fan self-energy, evaluated on the electronic eigenenergy:
;{{TAGO|ELPH_SCATTERING_APPROX|ERTA_LAMDBA}} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation)
:<math>
;{{TAGO|ELPH_SCATTERING_APPROX|ERTA_TAU }} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation)
\frac{1}{\tau^{\mathrm{SERTA}}_{n\mathbf{k}}} = \frac{2\pi}{\hbar} \sum_{n'\nu\mathbf{k}'} w_{n\mathbf{k},n'\mathbf{k}'} \, |g^{\nu}_{n\mathbf{k},n'\mathbf{k}'}|^2 \left[ (n_{\nu\mathbf{q}} + 1 - f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} - \hbar\omega_{\nu\mathbf{q}}) + (n_{\nu\mathbf{q}} + f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} + \hbar\omega_{\nu\mathbf{q}}) \right]
;{{TAGO|ELPH_SCATTERING_APPROX|MRTA_LAMDBA}} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation)
</math>
;{{TAGO|ELPH_SCATTERING_APPROX|MRTA_TAU }} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation)
:where <math>{\tau^{\mathrm{SERTA}}_{n\mathbf{k}}}</math> is the relaxation time (or scattering time, or lifetime) for state <math>(n,\mathbf{k})</math>, <math>w_{n\mathbf{k},n'\mathbf{k}'}</math> is the scattering weight, <math>g^{\nu}_{n\mathbf{k},n'\mathbf{k}'}</math> is the electron-phonon coupling matrix element, <math>f_{n\mathbf{k}}</math> is the population of the electronic state (Fermi-Dirac distribution), <math>n_{\nu\mathbf{q}}</math> is the population of the phononic state (Bose-Einstein distribution), <math>\varepsilon_{n\mathbf{k}}</math> is the energy of an electron band, <math>\omega_{\nu\mathbf{q}}</math> is the phonon frequency, and <math>\delta</math> is the Dirac delta function.
 
:For SERTA, the scattering weight is:
:<math>
w_{n\mathbf{k},n'\mathbf{k}'} = 1
</math>
 
;{{TAG|ELPH_SCATTERING_APPROX|ERTA_LAMDBA}} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation)
:Applies an energy-projected weight scaled by mean-free path (where <math>\mu</math> is the [[Chemical_potential_in_electron-phonon_interactions|chemical potential]]):
:<math>
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|} \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|\right)
</math>
{{NB|warning|The formula above is correct and used from the next release of VASP onwards. In VASP 6.5.0 and 6.5.1, the following formula is used:
:<math>
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|}\right) \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|
</math>
}}
;{{TAG|ELPH_SCATTERING_APPROX|ERTA_TAU }} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation)
:<math>
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2} \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|\right)
</math>
{{NB|warning|The formula above is correct and used from the next release of VASP onwards. In VASP 6.5.0 and 6.5.1, the following formula is used:
:<math>
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2}\right) \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|
</math>
}}
;{{TAG|ELPH_SCATTERING_APPROX|MRTA_LAMDBA}} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation)
:<math>
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|  |\mathbf{v}_{n'\mathbf{k}'}|}\right)
</math>
 
;{{TAG|ELPH_SCATTERING_APPROX|MRTA_TAU }} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation)
:<math>
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2}\right)
</math>


==Related tags and articles==
==Related tags and articles==
* [[Transport coefficients including electron-phonon scattering|Transport calculations]]
* [[Transport coefficients including electron-phonon scattering|Transport calculations]]
* [[Electronic transport coefficients]]
* [[Electron-phonon accumulators]]
* {{TAG|ELPH_RUN}}
* {{TAG|ELPH_RUN}}
* {{TAG|ELPH_TRANSPORT}}
* {{TAG|ELPH_TRANSPORT_DRIVER}}
* {{TAG|TRANSPORT_RELAXATION_TIME}}
* {{TAG|TRANSPORT_RELAXATION_TIME}}


[[Category:INCAR tag]][[Category:Electron-phonon_interactions]]
[[Category:INCAR tag]][[Category:Electron-phonon_interactions]]

Latest revision as of 08:05, 24 October 2025

ELPH_SCATTERING_APPROX = [string]
Default: ELPH_SCATTERING_APPROX = SERTA MRTA_LAMBDA 

Description: Select which type of approximation is used to compute the electron scattering lifetimes due to electron-phonon coupling

Mind: Available as of VASP 6.5.0

There are different approximations to compute the electronic lifetimes due to electron-phonon scattering. Each of these can lead to significantly different transport coefficients. It is possible to select more than one approximation in ELPH_SCATTERING_APPROX. In this case, additional electron-phonon accumulators are created for each scattering approximation.

Options to select

ELPH_SCATTERING_APPROX = CRTA - Constant Relaxation-Time Approximation
The relaxation time is assumed constant. It needs to be specified via TRANSPORT_RELAXATION_TIME. In this case, the computation of electron-phonon matrix elements is skipped entirely, which is a huge performance boost compared to the other relaxation-time approximations.
Warning: While the CRTA can be a reasonable approximation for metals, it will generally fail for insulators.
ELPH_SCATTERING_APPROX = SERTA - Self-Energy Relaxation-Time Approximation
Computes the relaxation time from the imaginary part of the Fan self-energy, evaluated on the electronic eigenenergy:
[math]\displaystyle{ \frac{1}{\tau^{\mathrm{SERTA}}_{n\mathbf{k}}} = \frac{2\pi}{\hbar} \sum_{n'\nu\mathbf{k}'} w_{n\mathbf{k},n'\mathbf{k}'} \, |g^{\nu}_{n\mathbf{k},n'\mathbf{k}'}|^2 \left[ (n_{\nu\mathbf{q}} + 1 - f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} - \hbar\omega_{\nu\mathbf{q}}) + (n_{\nu\mathbf{q}} + f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} + \hbar\omega_{\nu\mathbf{q}}) \right] }[/math]
where [math]\displaystyle{ {\tau^{\mathrm{SERTA}}_{n\mathbf{k}}} }[/math] is the relaxation time (or scattering time, or lifetime) for state [math]\displaystyle{ (n,\mathbf{k}) }[/math], [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} }[/math] is the scattering weight, [math]\displaystyle{ g^{\nu}_{n\mathbf{k},n'\mathbf{k}'} }[/math] is the electron-phonon coupling matrix element, [math]\displaystyle{ f_{n\mathbf{k}} }[/math] is the population of the electronic state (Fermi-Dirac distribution), [math]\displaystyle{ n_{\nu\mathbf{q}} }[/math] is the population of the phononic state (Bose-Einstein distribution), [math]\displaystyle{ \varepsilon_{n\mathbf{k}} }[/math] is the energy of an electron band, [math]\displaystyle{ \omega_{\nu\mathbf{q}} }[/math] is the phonon frequency, and [math]\displaystyle{ \delta }[/math] is the Dirac delta function.
For SERTA, the scattering weight is:
[math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = 1 }[/math]
ELPH_SCATTERING_APPROX = ERTA_LAMDBA - Energy Relaxation-Time Approximation (mean-free path approximation)
Applies an energy-projected weight scaled by mean-free path (where [math]\displaystyle{ \mu }[/math] is the chemical potential):
[math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|} \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|\right) }[/math]
Warning: The formula above is correct and used from the next release of VASP onwards. In VASP 6.5.0 and 6.5.1, the following formula is used:
[math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|}\right) \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right| }[/math]
ELPH_SCATTERING_APPROX = ERTA_TAU - Energy Relaxation-Time Approximation (lifetime approximation)
[math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2} \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right|\right) }[/math]
Warning: The formula above is correct and used from the next release of VASP onwards. In VASP 6.5.0 and 6.5.1, the following formula is used:
[math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2}\right) \left| \frac{\varepsilon_{n'\mathbf{k}'} - \mu}{\varepsilon_{n\mathbf{k}} - \mu} \right| }[/math]
ELPH_SCATTERING_APPROX = MRTA_LAMDBA - Momentum Relaxation-Time Approximation (mean-free path approximation)
[math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}| |\mathbf{v}_{n'\mathbf{k}'}|}\right) }[/math]
ELPH_SCATTERING_APPROX = MRTA_TAU - Momentum Relaxation-Time Approximation (lifetime approximation)
[math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{|\mathbf{v}_{n\mathbf{k}}|^2}\right) }[/math]

Related tags and articles