EFERMI NEDOS: Difference between revisions
(Created page with "{{DISPLAYTITLE:EFERMI_NEDOS}} {{TAGDEF|EFERMI_NEDOS|[integer]|21}} Description: Choose the number of points in the Gauss-Legendre integration grid used to evaluate the Fermi–Dirac distribution and determine the Fermi level. {{Available|6.5.0}} ---- During the self-consistent solution of the electronic structure, the Fermi level is obtained by integrating the electronic density of states weighted by the Fermi–Dirac occupation function. By performing a variable tr...") |
No edit summary |
||
| Line 2: | Line 2: | ||
{{TAGDEF|EFERMI_NEDOS|[integer]|21}} | {{TAGDEF|EFERMI_NEDOS|[integer]|21}} | ||
Description: | Description: Number of Gauss–Legendre integration points used to evaluate the Fermi–Dirac distribution and determine the Fermi level at finite temperature using the tetrahedron method. | ||
Only relevant when {{TAG|ISMEAR}} = −15 or −14. | |||
{{Available|6.5.0}} | {{Available|6.5.0}} | ||
---- | ---- | ||
'''EFERMI_NEDOS''' sets the number of points in the Gauss–Legendre grid used to integrate the Fermi–Dirac distribution for determining the Fermi level. | |||
Larger values improve accuracy, especially at low temperatures or with sharp DOS features, but also increase computational cost. | |||
A brief convergence test is recommended. | |||
==Implementation details== | |||
At <math>T=0</math>, the integrated and differential densities of states are | |||
$$ | |||
n(\epsilon)=\sum_{n\mathbf{k}}\theta(\epsilon-\epsilon_{n\mathbf{k}}), \qquad | |||
g(\epsilon)=\sum_{n\mathbf{k}}\delta(\epsilon-\epsilon_{n\mathbf{k}}). | |||
$$ | |||
At finite temperature, | |||
$$ | |||
N_e(\epsilon_F,T)= | |||
\sum_{n\mathbf{k}}f(\epsilon_{n\mathbf{k}}-\epsilon_F,T) | |||
=\int g(\epsilon)f(\epsilon-\epsilon_F,T)\,d\epsilon. | |||
\tag{1} | |||
$$ | |||
With the substitution <math>x = 1 - 2f(\epsilon-\epsilon_F,T)</math>, | |||
$$ | |||
\epsilon = k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F, \qquad | |||
d\epsilon = -k_BT\,\frac{2}{x^2-1}\,dx, | |||
$$ | |||
Eq. (1) becomes | |||
$$ | |||
N_e(\epsilon_F,T)= | |||
\frac{1}{2}\int_{-1}^{1} | |||
n\!\left(k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F\right)\,dx. | |||
$$ | |||
In practice, this integral is discretized as | |||
$$ | |||
N_e(\epsilon_F,T)\simeq | |||
\frac{1}{2}\sum_{i=1}^{N}w_i\, | |||
n\!\left(k_BT\ln\!\frac{1+x_i}{1-x_i}+\epsilon_F\right), | |||
$$ | |||
where <math>w_i</math> and <math>x_i</math> are Gauss–Legendre weights and abscissas. | |||
The step functions \(\theta(\epsilon-\epsilon_{n\mathbf{k}})\) entering \(n(\epsilon)\) are evaluated using the tetrahedron method, with the number of energy points <math>N</math> given by {{TAG|EFERMI_NEDOS}}. | |||
==Related tags and articles== | ==Related tags and articles== | ||
| Line 21: | Line 54: | ||
[[K-point integration]] | [[K-point integration]] | ||
[[Category:INCAR tag]][[Category:Electronic occupancy]][[Category:Electronic minimization]][[Category:Density of states]] | <!--[[Category:INCAR tag]] | ||
[[Category:Electronic occupancy]] | |||
[[Category:Electronic minimization]] | |||
[[Category:Density of states]]--> | |||
Revision as of 11:27, 15 October 2025
EFERMI_NEDOS = [integer]
Default: EFERMI_NEDOS = 21
Description: Number of Gauss–Legendre integration points used to evaluate the Fermi–Dirac distribution and determine the Fermi level at finite temperature using the tetrahedron method. Only relevant when ISMEAR = −15 or −14.
| Mind: Available as of VASP 6.5.0 |
EFERMI_NEDOS sets the number of points in the Gauss–Legendre grid used to integrate the Fermi–Dirac distribution for determining the Fermi level. Larger values improve accuracy, especially at low temperatures or with sharp DOS features, but also increase computational cost. A brief convergence test is recommended.
Implementation details
At [math]\displaystyle{ T=0 }[/math], the integrated and differential densities of states are $$ n(\epsilon)=\sum_{n\mathbf{k}}\theta(\epsilon-\epsilon_{n\mathbf{k}}), \qquad g(\epsilon)=\sum_{n\mathbf{k}}\delta(\epsilon-\epsilon_{n\mathbf{k}}). $$
At finite temperature, $$ N_e(\epsilon_F,T)= \sum_{n\mathbf{k}}f(\epsilon_{n\mathbf{k}}-\epsilon_F,T) =\int g(\epsilon)f(\epsilon-\epsilon_F,T)\,d\epsilon. \tag{1} $$
With the substitution [math]\displaystyle{ x = 1 - 2f(\epsilon-\epsilon_F,T) }[/math], $$ \epsilon = k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F, \qquad d\epsilon = -k_BT\,\frac{2}{x^2-1}\,dx, $$ Eq. (1) becomes $$ N_e(\epsilon_F,T)= \frac{1}{2}\int_{-1}^{1} n\!\left(k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F\right)\,dx. $$
In practice, this integral is discretized as $$ N_e(\epsilon_F,T)\simeq \frac{1}{2}\sum_{i=1}^{N}w_i\, n\!\left(k_BT\ln\!\frac{1+x_i}{1-x_i}+\epsilon_F\right), $$ where [math]\displaystyle{ w_i }[/math] and [math]\displaystyle{ x_i }[/math] are Gauss–Legendre weights and abscissas. The step functions \(\theta(\epsilon-\epsilon_{n\mathbf{k}})\) entering \(n(\epsilon)\) are evaluated using the tetrahedron method, with the number of energy points [math]\displaystyle{ N }[/math] given by EFERMI_NEDOS.
Related tags and articles
ISMEAR, SIGMA, Smearing technique, K-point integration