ML RCUT2: Difference between revisions
mNo edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{TAGDEF|ML_RCUT2|[real]|ML_RCUT1}} | {{TAGDEF|ML_RCUT2|[real]|{{TAG|ML_RCUT1}}}} | ||
Description: This flag sets the cutoff radius <math>R_\text{cut}</math> for the angular descriptor <math>\rho^{(3)}_i(r)</math> in the machine learning force field method | Description: This flag sets the cutoff radius <math>R_\text{cut}</math> for the angular descriptor <math>\rho^{(3)}_i(r)</math> in the machine learning force field method. | ||
---- | ---- | ||
The angular descriptor is constructed from | |||
<math> | |||
\rho_{i}^{(3)}\left(r,s,\theta\right) = \iint d\hat{\mathbf{r}} d\hat{\mathbf{s}} \delta\left(\hat{\mathbf{r}}\cdot\hat{\mathbf{s}} - \mathrm{cos}\theta\right) \sum\limits_{j=1}^{N_{a}} \sum\limits_{k \ne j}^{N_{a}} \rho_{ik} \left(r\hat{\mathbf{r}}\right) \rho_{ij} \left(s\hat{\mathbf{s}}\right), \quad \text{where} \quad | |||
\rho_{ij}\left(\mathbf{r}\right) = f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right) | |||
</math> | |||
and <math>g\left(\mathbf{r}\right)</math> is an approximation of the delta function. A basis set expansion of <math>\rho^{(3)}_i(r)</math> yields the expansion coefficients <math>p_{n\nu l}^{i}</math> which are used in practice to describe the atomic environment (see [[Machine learning force field: Theory#Descriptors|this section]] for details). The tag {{TAG|ML_RCUT2}} sets the cutoff radius <math>R_\text{cut}</math> at which the cutoff function <math>f_{\mathrm{cut}}\left(r_{ij}\right)</math> decays to zero. | |||
{{NB|mind|The cutoff radius determines how many neighbor atoms <math>N_\mathrm{a}</math> are taken into account to describe each central atom's environment. Hence, important features may be missed if the cutoff radius is set to a too small value. On the other hand, a large cutoff radius increases the computational cost of the descriptor as the cutoff sphere contains more neighbor atoms. A good compromise is always system-dependent, therefore different values should be tested to achieve satisfying accuracy '''and''' speed.}} | |||
The unit of the cut-off radius is <math>\AA</math>. | The unit of the cut-off radius is <math>\AA</math>. | ||
Revision as of 10:09, 13 October 2021
ML_RCUT2 = [real]
Default: ML_RCUT2 = ML_RCUT1
Description: This flag sets the cutoff radius [math]\displaystyle{ R_\text{cut} }[/math] for the angular descriptor [math]\displaystyle{ \rho^{(3)}_i(r) }[/math] in the machine learning force field method.
The angular descriptor is constructed from
[math]\displaystyle{ \rho_{i}^{(3)}\left(r,s,\theta\right) = \iint d\hat{\mathbf{r}} d\hat{\mathbf{s}} \delta\left(\hat{\mathbf{r}}\cdot\hat{\mathbf{s}} - \mathrm{cos}\theta\right) \sum\limits_{j=1}^{N_{a}} \sum\limits_{k \ne j}^{N_{a}} \rho_{ik} \left(r\hat{\mathbf{r}}\right) \rho_{ij} \left(s\hat{\mathbf{s}}\right), \quad \text{where} \quad \rho_{ij}\left(\mathbf{r}\right) = f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right) }[/math]
and [math]\displaystyle{ g\left(\mathbf{r}\right) }[/math] is an approximation of the delta function. A basis set expansion of [math]\displaystyle{ \rho^{(3)}_i(r) }[/math] yields the expansion coefficients [math]\displaystyle{ p_{n\nu l}^{i} }[/math] which are used in practice to describe the atomic environment (see this section for details). The tag ML_RCUT2 sets the cutoff radius [math]\displaystyle{ R_\text{cut} }[/math] at which the cutoff function [math]\displaystyle{ f_{\mathrm{cut}}\left(r_{ij}\right) }[/math] decays to zero.
Mind: The cutoff radius determines how many neighbor atoms [math]\displaystyle{ N_\mathrm{a} }[/math] are taken into account to describe each central atom's environment. Hence, important features may be missed if the cutoff radius is set to a too small value. On the other hand, a large cutoff radius increases the computational cost of the descriptor as the cutoff sphere contains more neighbor atoms. A good compromise is always system-dependent, therefore different values should be tested to achieve satisfying accuracy and speed. |
The unit of the cut-off radius is [math]\displaystyle{ \AA }[/math].
Related Tags and Sections
ML_LMLFF, ML_RCUT1, ML_W1, ML_SION1, ML_SION2