Electronic transport coefficients: Difference between revisions

From VASP Wiki
No edit summary
Line 110: Line 110:
| Heat current carried by electrons in response to a thermal gradient
| Heat current carried by electrons in response to a thermal gradient
|}
|}
== Electron and hole mobilities ==
In semiconductors, the electrical conductivity can be separated into contributions from conduction-band electrons and valence-band holes. 
This is only meaningful in materials with a finite band gap, where carriers can be clearly identified as either electrons in the conduction band (CB) or holes in the valence band (VB).
; Electron mobility
The electron mobility is defined as
:<math>
\mu_e = \frac{\sigma_{n \in \text{CB}}}{n_e},
</math>
where the carrier density of electrons in the conduction band is
:<math>
n_e = \sum_{\mathbf{k}n \in \text{CB}}
f_{n\mathbf{k}}(\epsilon, T_\sigma).
</math>
; Hole mobility
The hole mobility is defined as
:<math>
\mu_h = \frac{\sigma_{n \in \text{VB}}}{n_h},
</math>
where the carrier density of holes in the valence band is
:<math>
n_h = \sum_{\mathbf{k}n \in \text{VB}}
\big[1 - f_{n\mathbf{k}}(\mu, T)\big].
</math>
Here:
* <math>\sigma_{n \in \text{CB}}</math> and <math>\sigma_{n \in \text{VB}}</math> denote the conductivity restricted to states in the conduction and valence bands, respectively, 
* <math>f_{n\mathbf{k}}</math> is the Fermi–Dirac distribution, 
* <math>\Omega</math> is the volume of the unit cell.


== Approximations and methods ==
== Approximations and methods ==

Revision as of 14:58, 12 September 2025

Introduction

The theoretical framework is based on the linearized Boltzmann transport equation (BTE) within the relaxation time approximation (RTA). The goal is to calculate electronic lifetimes, scattering rates, and transport coefficients such as the electrical conductivity, Seebeck coefficient, and the electronic thermal conductivity.

Electronic states and wavefunctions

The starting point is the set of Kohn–Sham eigenstates obtained from density functional theory (DFT). For a given Bloch state,

[math]\displaystyle{ H_{\mathbf{k}} |\psi_{n\mathbf{k}}\rangle = \epsilon_{n\mathbf{k}} S_{\mathbf{k}} |\psi_{n\mathbf{k}}\rangle, }[/math]

where [math]\displaystyle{ n }[/math] is the band index, [math]\displaystyle{ \mathbf{k} }[/math] is a crystal momentum, and [math]\displaystyle{ S_{\mathbf{k}} }[/math] is the overlap matrix.

Electron–phonon coupling matrix elements

Phonon scattering is described by the electron–phonon coupling matrix elements

[math]\displaystyle{ g_{n\mathbf{k},n'\mathbf{k}'}^{\nu\mathbf{q}} = \langle \psi_{n\mathbf{k}} | \partial_{\nu\mathbf{q}} V | \psi_{n'\mathbf{k}'} \rangle, }[/math]

where [math]\displaystyle{ \partial_{\nu\mathbf{q}} V }[/math] is the perturbation of the crystal potential due to a phonon of branch index [math]\displaystyle{ \nu }[/math] and wavevector [math]\displaystyle{ \mathbf{q} }[/math]. These matrix elements determine the scattering probability between states [math]\displaystyle{ (n,\mathbf{k}) }[/math] and [math]\displaystyle{ (n',\mathbf{k}') }[/math].

Scattering rates and lifetimes

Within Fermi’s golden rule, the inverse lifetime (scattering rate) of an electron in state [math]\displaystyle{ (n,\mathbf{k}) }[/math] is

[math]\displaystyle{ \frac{1}{\tau_{n\mathbf{k}}} = \frac{2\pi}{\hbar} \sum_{n'\nu\mathbf{k}'} w_{n\mathbf{k},n'\mathbf{k}'} \, |g^{\nu}_{n\mathbf{k},n'\mathbf{k}'}|^2 \left[ (n_{\nu\mathbf{q}} + 1 - f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} - \hbar\omega_{\nu\mathbf{q}}) + (n_{\nu\mathbf{q}} + f_{n'\mathbf{k}'}) \, \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}'} + \hbar\omega_{\nu\mathbf{q}}) \right] }[/math]

where:

  • [math]\displaystyle{ f_{n\mathbf{k}} }[/math] is the Fermi–Dirac occupation,
  • [math]\displaystyle{ n_{\nu\mathbf{q}} }[/math] is the Bose–Einstein phonon occupation,
  • [math]\displaystyle{ \omega_{\nu\mathbf{q}} }[/math] is the phonon frequency.
  • [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} }[/math] weight determined by the ELPH_SCATTERING_APPROX

The two terms correspond to phonon emission and absorption, respectively.

Linearized Boltzmann transport equation

The distribution function of electrons under an applied electric field [math]\displaystyle{ \mathbf{E} }[/math] can be written as

[math]\displaystyle{ f_{n\mathbf{k}} = f^0_{n\mathbf{k}} + \delta f_{n\mathbf{k}}, }[/math]

where [math]\displaystyle{ f^0 }[/math] is the equilibrium Fermi–Dirac distribution. In the relaxation-time approximation,

[math]\displaystyle{ \delta f_{n\mathbf{k}} = - e \tau_{n\mathbf{k}} \, \mathbf{v}_{n\mathbf{k}} \cdot \mathbf{E} \left(-\frac{\partial f^0_{n\mathbf{k}}}{\partial \epsilon_{n\mathbf{k}}}\right). }[/math]

Here [math]\displaystyle{ \mathbf{v}_{n\mathbf{k}} = \nabla_{\mathbf{k}} \epsilon_{n\mathbf{k}} / \hbar }[/math] is the group velocity.

Transport distribution function

The energy-resolved transport distribution function is

[math]\displaystyle{ \sigma(\epsilon) = \frac{e^2}{N\Omega} \sum_{n\mathbf{k}} \tau_{n\mathbf{k}} \, \mathbf{v}_{n\mathbf{k}} \otimes \mathbf{v}_{n\mathbf{k}} \, \delta(\epsilon_{n\mathbf{k}}-\epsilon), }[/math]

where [math]\displaystyle{ \Omega }[/math] is the unit-cell volume and [math]\displaystyle{ N }[/math] the number of [math]\displaystyle{ \mathbf{k} }[/math]-points.

Onsager coefficients

The Onsager coefficients are defined as

[math]\displaystyle{ L_{ij} = \int d\epsilon \, \sigma(\epsilon) \, (\epsilon-\mu)^{i+j-2} \left( -\frac{\partial f^0}{\partial \epsilon} \right), }[/math]

where [math]\displaystyle{ \sigma(\epsilon) }[/math] is the transport distribution function, [math]\displaystyle{ \mu }[/math] the chemical potential, and [math]\displaystyle{ f^0 }[/math] the Fermi–Dirac distribution.

In practice, this integral can be evaluated in one of two ways determined by ELPH_TRANSPORT_DRIVER

Linear energy grids and Simpson rule

The integrand is computed on a linear energy grid, and the Simpson rule is used for integration. The discretized Onsager coefficient is evaluated as

[math]\displaystyle{ L_{ij} \;\approx\; \sum_{k=1}^{N} w_k \; \sigma(\epsilon_k)\; (\epsilon_k - u)^{\,i+j-2}\; \left( -\frac{\partial f^0}{\partial \epsilon} \right). }[/math]

with [math]\displaystyle{ \epsilon_k = \epsilon_\text{min}+(k-1)\Delta \epsilon,\;\; k=1,\dots,N }[/math] and [math]\displaystyle{ \Delta \epsilon = \tfrac{\epsilon_\text{max}-\epsilon_\text{min}}{N-1} }[/math] and [math]\displaystyle{ \epsilon_\text{min} }[/math]=ELPH_TRANSPORT_EMIN and [math]\displaystyle{ \epsilon_\text{max} }[/math]=ELPH_TRANSPORT_EMAX or alternatively both [math]\displaystyle{ \epsilon_\text{min} }[/math] and [math]\displaystyle{ \epsilon_\text{max} }[/math] are set by ELPH_TRANSPORT_DFERMI_TOL and [math]\displaystyle{ w_k }[/math] the weights due to the Simpron integration rule.

Gauss–Legendre quadrature

A change of variables is introduced to avoid explicitly sampling the sharp derivative of the Fermi–Dirac function. Define

[math]\displaystyle{ x = 1-2f(\epsilon-\mu,T) }[/math]

so that [math]\displaystyle{ \epsilon = \mu + k_B T \ln\frac{1+x}{1-x} }[/math]. With this substitution, the derivative of the Fermi–Dirac distribution is absorbed into the Jacobian, and the Onsager coefficients take the form

[math]\displaystyle{ L_{ij} = \tfrac{1}{2} \sum_{k=1}^N w_k \, \left( \frac{k_B T}{-e} \ln \frac{1+x_k}{1-x_k} \right)^{i+j-2} \sigma\!\left(\mu + k_B T \ln\frac{1+x_k}{1-x_k}\right), }[/math]

with [math]\displaystyle{ w_k }[/math] and [math]\displaystyle{ x_k }[/math] the weights and abcissae of the Gauss-Legendre quadrature rule.

The Gauss–Legendre approach has the advantage that the integration grid adapts naturally to the width of the Fermi window, making it numerically efficient without having define manually the energy window through ELPH_TRANSPORT_DFERMI_TOL or ELPH_TRANSPORT_EMIN and ELPH_TRANSPORT_EMAX. Instead, only the number of points [math]\displaystyle{ N }[/math] in the sum above needs to be defined through TRANSPORT_NEDOS.

Transport coefficients

Quantity Formula Physical meaning
Electrical conductivity [math]\displaystyle{ \sigma }[/math] [math]\displaystyle{ \sigma = L_{11} }[/math] Charge current response to an electric field
Seebeck coefficient [math]\displaystyle{ S }[/math] [math]\displaystyle{ S = \tfrac{1}{T} L_{11}^{-1} L_{12} }[/math] Voltage generated per temperature gradient
Peltier coefficient [math]\displaystyle{ \Pi }[/math] [math]\displaystyle{ \Pi = T S = L_{11}^{-1} L_{12} }[/math] Heat carried per unit charge current
Electronic thermal conductivity [math]\displaystyle{ \kappa_e }[/math] [math]\displaystyle{ \kappa_e = \tfrac{1}{T} ( L_{22} - L_{21} L_{11}^{-1} L_{12} ) }[/math] Heat current carried by electrons in response to a thermal gradient

Electron and hole mobilities

In semiconductors, the electrical conductivity can be separated into contributions from conduction-band electrons and valence-band holes. This is only meaningful in materials with a finite band gap, where carriers can be clearly identified as either electrons in the conduction band (CB) or holes in the valence band (VB).

Electron mobility

The electron mobility is defined as

[math]\displaystyle{ \mu_e = \frac{\sigma_{n \in \text{CB}}}{n_e}, }[/math]

where the carrier density of electrons in the conduction band is

[math]\displaystyle{ n_e = \sum_{\mathbf{k}n \in \text{CB}} f_{n\mathbf{k}}(\epsilon, T_\sigma). }[/math]
Hole mobility

The hole mobility is defined as

[math]\displaystyle{ \mu_h = \frac{\sigma_{n \in \text{VB}}}{n_h}, }[/math]

where the carrier density of holes in the valence band is

[math]\displaystyle{ n_h = \sum_{\mathbf{k}n \in \text{VB}} \big[1 - f_{n\mathbf{k}}(\mu, T)\big]. }[/math]

Here:

  • [math]\displaystyle{ \sigma_{n \in \text{CB}} }[/math] and [math]\displaystyle{ \sigma_{n \in \text{VB}} }[/math] denote the conductivity restricted to states in the conduction and valence bands, respectively,
  • [math]\displaystyle{ f_{n\mathbf{k}} }[/math] is the Fermi–Dirac distribution,
  • [math]\displaystyle{ \Omega }[/math] is the volume of the unit cell.

Approximations and methods

  • Tetrahedron method: used for Brillouin-zone integration, avoiding the need for ad-hoc smearing parameters.
  • Plane-wave Bloch states: ensure systematic convergence and avoid interpolation errors.
  • Selection algorithms: restrict scattering processes to those allowed by energy conservation (delta functions), minimizing the number of matrix elements to compute.