ELPH SCATTERING APPROX: Difference between revisions
(Add accumulator links) |
No edit summary |
||
| Line 19: | Line 19: | ||
:Calculates the relaxation time from the imaginary part of the electron self-energy. | :Calculates the relaxation time from the imaginary part of the electron self-energy. | ||
;{{TAGO|ELPH_SCATTERING_APPROX|ERTA_LAMDBA}} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation) | ;{{TAGO|ELPH_SCATTERING_APPROX|ERTA_LAMDBA}} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation) | ||
:<math> | |||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{\|\mathbf{v}_{n\mathbf{k}}\| \cdot \|\mathbf{v}_{n'\mathbf{k}'}\|}\right) \cdot \left| \frac{\varepsilon_{n'\mathbf{k}'} - \varepsilon_F}{\hbar\omega - \varepsilon_F} \right| | |||
</math> | |||
;{{TAGO|ELPH_SCATTERING_APPROX|ERTA_TAU }} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation) | ;{{TAGO|ELPH_SCATTERING_APPROX|ERTA_TAU }} - <u>E</u>nergy <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation) | ||
:<math> | |||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{\|\mathbf{v}_{n\mathbf{k}}\|^2}\right) \cdot \left| \frac{\varepsilon_{n'\mathbf{k}'} - \varepsilon_F}{\hbar\omega - \varepsilon_F} \right| | |||
</math> | |||
;{{TAGO|ELPH_SCATTERING_APPROX|MRTA_LAMDBA}} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation) | ;{{TAGO|ELPH_SCATTERING_APPROX|MRTA_LAMDBA}} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (mean-free path approximation) | ||
:<math> | |||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{\|\mathbf{v}_{n\mathbf{k}}\| \cdot \|\mathbf{v}_{n'\mathbf{k}'}\|}\right) | |||
</math> | |||
;{{TAGO|ELPH_SCATTERING_APPROX|MRTA_TAU }} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation) | ;{{TAGO|ELPH_SCATTERING_APPROX|MRTA_TAU }} - <u>M</u>omentum <u>R</u>elaxation-<u>T</u>ime <u>A</u>pproximation (lifetime approximation) | ||
:<math> | |||
w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{\|\mathbf{v}_{n\mathbf{k}}\|^2}\right) | |||
</math> | |||
==Related tags and articles== | ==Related tags and articles== | ||
Revision as of 12:56, 30 June 2025
ELPH_SCATTERING_APPROX = [string]
Default: ELPH_SCATTERING_APPROX = SERTA MRTA_LAMBDA
Description: Select which type of approximation is used to compute the electron scattering lifetimes due to electron-phonon coupling
| Mind: Available as of VASP 6.5.0 |
There are different approximations to compute the electronic lifetimes due to electron-phonon scattering. Each of these can lead to significantly different transport coefficients. It is possible to select more than one approximation in ELPH_SCATTERING_APPROX. In this case, additional electron-phonon accumulators are created for each scattering approximation.
Options to select
ELPH_SCATTERING_APPROX = CRTA- Constant Relaxation-Time Approximation- The relaxation time is assumed constant. It needs to be specified via TRANSPORT_RELAXATION_TIME. In this case, the computation of electron-phonon matrix elements is skipped entirely, which is a huge performance boost compared to the other relaxation-time approximations.
| Warning: While the CRTA can be a reasonable approximation for metals, it will generally fail for insulators. |
ELPH_SCATTERING_APPROX = SERTA- Self-Energy Relaxation-Time Approximation- Calculates the relaxation time from the imaginary part of the electron self-energy.
ELPH_SCATTERING_APPROX = ERTA_LAMDBA- Energy Relaxation-Time Approximation (mean-free path approximation)- [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{\|\mathbf{v}_{n\mathbf{k}}\| \cdot \|\mathbf{v}_{n'\mathbf{k}'}\|}\right) \cdot \left| \frac{\varepsilon_{n'\mathbf{k}'} - \varepsilon_F}{\hbar\omega - \varepsilon_F} \right| }[/math]
ELPH_SCATTERING_APPROX = ERTA_TAU- Energy Relaxation-Time Approximation (lifetime approximation)- [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{\|\mathbf{v}_{n\mathbf{k}}\|^2}\right) \cdot \left| \frac{\varepsilon_{n'\mathbf{k}'} - \varepsilon_F}{\hbar\omega - \varepsilon_F} \right| }[/math]
ELPH_SCATTERING_APPROX = MRTA_LAMDBA- Momentum Relaxation-Time Approximation (mean-free path approximation)- [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{\|\mathbf{v}_{n\mathbf{k}}\| \cdot \|\mathbf{v}_{n'\mathbf{k}'}\|}\right) }[/math]
ELPH_SCATTERING_APPROX = MRTA_TAU- Momentum Relaxation-Time Approximation (lifetime approximation)- [math]\displaystyle{ w_{n\mathbf{k},n'\mathbf{k}'} = \left(1 - \frac{\mathbf{v}_{n\mathbf{k}} \cdot \mathbf{v}_{n'\mathbf{k}'}}{\|\mathbf{v}_{n\mathbf{k}}\|^2}\right) }[/math]