News

Bugfix: VASP.5.2.11 on IBM

Compiling with the xlf compiler (version 12.1.0.9) and running on an IBM SP6 revealed several bugs (unbelievable what the ifort compiler is able to swallow and still produce running code).

N.B.: We recommend this update to all users, not only those using the xlf compiler.

Bugfix: in VASP.5.2.11

Bugfix to vdwforcefield.F: ) A workaround so that Grimme’s method works for Xe POTCAR files wrongly labelled “X”.

Corrected mistakes in makefile.ibm_hlrn and makefile.ibm_hlrn-serial

Bugfix: in VASP.5.2.11

Bugfix to mlwf.F: ) Projections were calculated incorrectly in the noncollinear case.

Corrected mistakes in makefile.ibm_hlrn and makefile.ibm_hlrn-serial

Bugfix: in VASP.5.2.11

Unfortunately every new release immediately triggers a few bugfixes:

Bugfix to nmr.F: ) One call to SETDIJ_AVEC_ should have been to SETDIJ_AVEC_ONE_CENTER

Bugfix to us.F: ) An END SUBROUTINE SETDIJ_AVEC_ should have been END SUBROUTINE SETDIJ_AVEC_ONE_CENTER

Bugfix to david_inner.F: ) Could not be compiled without scaLAPACK. Can be now, but will not work correctly [still heavily under development anyway].

We are very sorry for the inconvience.

A multiferroic material to search for the permanent electric dipole moment of the electron

K. Z. Rushchanskii, S. Kamba, V. Goian, P. Vaněk, M. Savinov, J. Prokleška, D. Nuzhnyy, K. Knížek, F. Laufek, S. Eckel, S. K. Lamoreaux, A. O. Sushkov, M. Ležaić, and N. A. Spaldin

Nature Materials 9, 649 (2010).

We describe the first-principles design and subsequent synthesis of a new material with the specific functionalities required for a solid-state-based search for the permanent electric dipole moment of the electron. We show computationally that perovskite-structure europium barium titanate should exhibit the required large and pressure-dependent ferroelectric polarization, local magnetic moments and absence of magnetic ordering at liquid-helium temperature. Subsequent synthesis and characterization of Eu0.5Ba0.5TiO3 ceramics confirm the predicted desirable properties.

ACFDT total energies in the RPA

Accurate Bulk Properties from Approximate Many-Body Techniques Judith Harl and Georg Kresse

Phys. Rev. Lett. 103, 056401 (2009)

GW quasiparticle energies

Accurate Quasiparticle Spectra from Self-Consistent GW Calculations with Vertex Corrections

M. Shishkin, M. Marsman, and G. Kresse

Phys. Rev. Lett. 99, 246403 (2007)

HSE hybrid functional

Screened hybrid density functionals applied to solids J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Ángyán

J. Chem. Phys. 124, 154709 (2006), and erratum: J. Chem. Phys. 125, 249901 (2006)

Linear response in the PAW

Linear optical properties in the projector-augmented wave methodology M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt

Phys. Rev. B 73, 045112 (2006)

PBE0 hybrid functional

The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set J. Paier, R. Hirschl, M. Marsman, G. Kresse

J. Chem. Phys. 122, 234102 (2005)

PAW paper II

From ultrasoft pseudopotentials to the projector augmented-wave method G. Kresse, D. Joubert

Phys. Rev. B 59, 1758–1775 (1999)

VASP methodology paper II

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. G. Kresse, J. Furthmüller

Phys. Rev. B 54, 11169–11186 (1996)

VASP methodology paper I

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. G. Kresse, J. Furthmüller

Computational Materials Science, Volume 6, Issue 1, July 1996, Pages 15-50

PAW paper I

Projector augmented-wave method P. E. Blöchl

Phys. Rev. B 50, 17953–17979 (1994)