| l
|
m
|
Name
|
Ylm
|
| 0 |
1 |
s |
[math]\displaystyle{ \frac{1}{\sqrt{4\pi}} }[/math]
|
| 1 |
-1 |
py |
[math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{y}{r} }[/math]
|
| 1 |
0 |
pz |
[math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{z}{r} }[/math]
|
| 1 |
1 |
py |
[math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{x}{r} }[/math]
|
| 2 |
-2 |
dxy |
[math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2} }[/math]
|
| 2 |
-1 |
dyz |
[math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{yz}{r^2} }[/math]
|
| 2 |
0 |
dz2 |
[math]\displaystyle{ \frac{1}{4}\sqrt{\frac{5}{\pi}}\frac{3z^2-r^2}{r^2} }[/math]
|
| 2 |
1 |
dxz |
[math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{zx}{r^2} }[/math]
|
| 2 |
2 |
dx2-y2 |
[math]\displaystyle{ \frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2} }[/math]
|
| 3 |
-3 |
fy(3x2-y2) |
[math]\displaystyle{ \frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(3x^2-y^2)y}{r^3} }[/math]
|
| 3 |
-2 |
fxyz |
[math]\displaystyle{ \frac{1}{2}\sqrt{\frac{105}{\pi}}\frac{xyz}{r^3} }[/math]
|
| 3 |
-1 |
fyz2 |
[math]\displaystyle{ \frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)y}{r^3} }[/math]
|
| 3 |
0 |
fz3 |
[math]\displaystyle{ \frac{1}{4}\sqrt{\frac{7}{\pi}}\frac{(5z^2-3r^2)z}{r^3} }[/math]
|
| 3 |
1 |
fxz2 |
[math]\displaystyle{ \frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)x}{r^3} }[/math]
|
| 3 |
2 |
fz(x2-y2) |
[math]\displaystyle{ \frac{1}{4}\sqrt{\frac{105}{\pi}}\frac{(x^2-y^2)z}{r^3} }[/math]
|
| 3 |
3 |
fx(x2-3y2) |
[math]\displaystyle{ \frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(x^2-3y^2)x}{r^3} }[/math]
|