Electric field response from density-functional-perturbation theory

From VASP Wiki
Revision as of 11:28, 9 February 2024 by Miranda.henrique (talk | contribs)

Density-functional-perturbation theory provides a way to compute the second-order linear response to ionic displacement, strain, and electric fields. The equations are derived as follows.

In density-functional theory, we solve the Kohn-Sham (KS) equations

[math]\displaystyle{ H(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle= e_{n\mathbf{k}}S(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle, }[/math]

where [math]\displaystyle{ H(\mathbf{k}) }[/math] is the DFT Hamiltonian, [math]\displaystyle{ S(\mathbf{k}) }[/math] is the overlap operator and, [math]\displaystyle{ | \psi_{n\mathbf{k}} \rangle }[/math] and [math]\displaystyle{ e_{n\mathbf{k}} }[/math] are the KS eigenstates.

To compute the response with respect to an external electric field one has to solve two Sternheimer equations. The first one to obtain the derivative of the orbitals with respect to [math]\displaystyle{ \mathbf{k} }[/math]

[math]\displaystyle{ \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right] |\partial_\mathbf{k}\tilde{u}_{n\mathbf{k}}\rangle = -\partial_\mathbf{k} \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right] |\tilde{u}_{n\mathbf{k}}\rangle }[/math]

and a second one with respect to an external electric field

[math]\displaystyle{ \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right] |\partial_\mathcal{E_\alpha}\tilde{u}_{n\mathbf{k}} \rangle = -\Delta H_{\text{SCF}}(\mathbf{k}) |\tilde{u}_{n\mathbf{k}}\rangle -\mathbf{\hat{q}_\alpha}\cdot |\vec{\beta}_{n\mathbf{k}}\rangle }[/math]

with

[math]\displaystyle{ |\vec{\beta}_{n\mathbf{k}}\rangle= \left( 1+\sum_{ij} |\tilde{p}_{i\mathbf{k}}\rangle Q_{ij} \langle\tilde{p}_{j\mathbf{k}}| \right) |\partial_\mathbf{k} \tilde{u}_{n\mathbf{k}}\rangle+ i\left( \sum_{ij} |\tilde{p}_{i\mathbf{k}}\rangle Q_{ij} (\mathbf{r}-\mathbf{R}_i)-\vec{\tau}_{ij} \langle\tilde{p}_{j\mathbf{k}}| \right)|\tilde{u}_{n\mathbf{k}}\rangle }[/math]