Static linear response: theory

From VASP Wiki
Revision as of 14:48, 1 August 2022 by Miranda.henrique (talk | contribs) (Created page with "Let’s consider three types of static perturbations # atomic displacements <math display="inline">u_m</math> # homogeneous strains <math display="inline">\eta_j</math> with...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Let’s consider three types of static perturbations

  1. atomic displacements [math]\displaystyle{ u_m }[/math]
  2. homogeneous strains [math]\displaystyle{ \eta_j }[/math] with [math]\displaystyle{ j=\{1..6\} }[/math]
  3. static electric field [math]\displaystyle{ \mathcal{E}_\alpha }[/math] with [math]\displaystyle{ \alpha=\{1..3\} }[/math]

By performing a Taylor expansion of the total energy in terms of these perturbations we obtain

[math]\displaystyle{ \begin{aligned} E(u,\mathcal{E},\eta) = &E_0 + \\ &\frac{\partial E}{\partial u_m} u_m + \frac{\partial E}{\partial \mathcal{E}_\alpha} \mathcal{E}_\alpha+ \frac{\partial E}{\partial \eta_j} \eta_j + \\ &\frac{1}{2} \frac{\partial^2 E} {\partial u_m \partial u_n } u_m u_n + \frac{1}{2} \frac{\partial^2 E} {\partial \mathcal{E}_\alpha \partial \mathcal{E}_\beta } \mathcal{E}_\alpha \mathcal{E}_\beta + \frac{1}{2} \frac{\partial^2 E} {\partial \eta_j \partial \eta_k} \eta_j \eta_k + \\ &\frac{\partial^2 E}{\partial u_m \partial \mathcal{E}_\alpha} u_m \mathcal{E}_\alpha + \frac{\partial^2 E}{\partial u_m \partial \eta_j} u_m \eta_j + \frac{\partial^2 E}{\partial \mathcal{E}_\alpha \partial \eta_j} \mathcal{E}_\alpha \eta_j + \text{terms of higher order} \end{aligned} }[/math]


The derivatives of the energy with respect to an electric field are the polarization, with respect to atomic displacements are the forces, with respect to changes in the lattice vectors are the stress tensor.

[math]\displaystyle{ P_\alpha = -\frac{\partial E}{\partial \mathcal{E}_\alpha} \qquad \text{polarization} }[/math]

[math]\displaystyle{ F_m = -\Omega_0\frac{\partial E}{\partial u_m} \qquad \text{forces} }[/math]

[math]\displaystyle{ \sigma_j = \frac{\partial E}{\partial \eta_j} \qquad \text{stresses} }[/math]

This leads to the following ‘clamped-ion’ or ‘frozen-ion’ definitions:

[math]\displaystyle{ \overline{\chi}_{\alpha\beta} = - \frac{\partial^2 E}{\partial \mathcal{E}_\alpha \partial \mathcal{E}_\beta} |_{u,\eta} \qquad \text{dielectric susceptibility} }[/math]

[math]\displaystyle{ \overline{C}_{jk} = \frac{\partial^2 E}{\partial \eta_j \partial \eta_k} |_{u,\mathcal{E}} \qquad \text{elastic tensor} }[/math]

[math]\displaystyle{ \Phi_{mn}=\Omega_0 \frac{\partial^2 E}{\partial u_m \partial u_n} |_{\mathcal{E},\eta} \qquad \text{force-constants} }[/math]

[math]\displaystyle{ \overline{e}_{\alpha k} = \frac{\partial^2 E}{\partial \mathcal{E}_\alpha \partial \eta_k} |_{u} \qquad \text{piezoelectric tensor} }[/math]

[math]\displaystyle{ Z_{m\alpha}=-\Omega_0 \frac{\partial^2 E}{\partial u_m \partial \mathcal{E}_\alpha} |_{\eta} \qquad \text{Born effective charges} }[/math]

[math]\displaystyle{ \Xi_{mj}=-\Omega_0 \frac{\partial^2 E}{\partial u_m \partial \eta_j} |_{\mathcal{E}} \qquad \text{force response internal strain tensor} }[/math]