Angular functions: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 25: Line 25:
|-
|-
|  2 ||  2 || dx2-y2 || <math>\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2}</math>
|  2 ||  2 || dx2-y2 || <math>\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2}</math>
|-
|  3 || -3 || fy(3x2-y2) || <math>\frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(3x^2-y^2)y}{r^3}</math>
|-
|  3 || -2 || fxyz      || <math>\frac{1}{2}\sqrt{\frac{105}{\pi}}\frac{xyz}{r^3}</math>
|-
|  3 || -1 || fyz2      || <math>\frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)y}{r^3}</math>
|-
|  3 ||  0 || fz3        || <math>\frac{1}{4}\sqrt{\frac{7}{\pi}}\frac{(5z^2-3r^2)z}{r^3}</math>
|-
|  3 ||  1 || fxz2      || <math>\frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)x}{r^3}</math>
|-
|  3 ||  2 || fz(x2-y2)  || <math>\frac{1}{4}\sqrt{\frac{105}{\pi}}\frac{(x^2-y^2)z}{r^3}</math>
|-
|  3 ||  3 || fx(x2-3y2) || <math>\frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(x^2-3y^2)x}{r^3}</math>


|}
|}

Revision as of 15:03, 13 January 2017

real spherical harmonics
l m Name Ylm
0 1 s [math]\displaystyle{ \frac{1}{\sqrt{4\pi}} }[/math]
1 -1 py [math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{y}{r} }[/math]
1 0 pz [math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{z}{r} }[/math]
1 1 py [math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{x}{r} }[/math]
2 -2 dxy [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2} }[/math]
2 -1 dyz [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{yz}{r^2} }[/math]
2 0 dz2 [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{5}{\pi}}\frac{3z^2-r^2}{r^2} }[/math]
2 1 dxz [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{zx}{r^2} }[/math]
2 2 dx2-y2 [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2} }[/math]
3 -3 fy(3x2-y2) [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(3x^2-y^2)y}{r^3} }[/math]
3 -2 fxyz [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{105}{\pi}}\frac{xyz}{r^3} }[/math]
3 -1 fyz2 [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)y}{r^3} }[/math]
3 0 fz3 [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{7}{\pi}}\frac{(5z^2-3r^2)z}{r^3} }[/math]
3 1 fxz2 [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)x}{r^3} }[/math]
3 2 fz(x2-y2) [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{105}{\pi}}\frac{(x^2-y^2)z}{r^3} }[/math]
3 3 fx(x2-3y2) [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(x^2-3y^2)x}{r^3} }[/math]