Angular functions: Difference between revisions
Vaspmaster (talk | contribs) No edit summary |
Vaspmaster (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
:{| border="1" cellspacing="0" cellpadding="5" | :{| border="1" cellspacing="0" cellpadding="5" | ||
|- | |- | ||
|+ real spherical harmonics | |||
! ''l'' | ! ''l'' | ||
! ''m'' | ! ''m'' | ||
Revision as of 14:52, 13 January 2017
real spherical harmonics l m Name Ylm 0 1 s [math]\displaystyle{ \frac{1}{\sqrt{4\pi}} }[/math] 1 -1 py [math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{y}{r} }[/math] 1 0 pz [math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{z}{r} }[/math] 1 1 py [math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{x}{r} }[/math] 2 -2 dxy [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2} }[/math] 2 -1 dyz [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{yz}{r^2} }[/math] 2 0 dz2 [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{5}{\pi}}\frac{3z^2-r^2}{r^2} }[/math] 2 1 dxz [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{zx}{r^2} }[/math] 2 2 dx2-y2 [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2} }[/math]