Angular functions: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 7: Line 7:
|-
|-
|  0 ||  1 || s || <math>\frac{1}{\sqrt{4\pi}}</math>
|  0 ||  1 || s || <math>\frac{1}{\sqrt{4\pi}}</math>
|-
|  1 || -1 || py || <math>\sqrt{\frac{3}{4\pi}}\frac{y}{r}</math>
|-
|  1 ||  0 || pz || <math>\sqrt{\frac{3}{4\pi}}\frac{z}{r}</math>
|-
|  1 ||  1 || py || <math>\sqrt{\frac{3}{4\pi}}\frac{x}{r}</math>
|-
|  2 || -2 || dxy    || <math>\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2}</math>
|-
|  2 || -1 || dyz    || <math>\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{yz}{r^2}</math>
|-
|  2 ||  0 || dz2    || <math>\frac{1}{4}\sqrt{\frac{5}{\pi}}\frac{3z^2-r^2}{r^2}</math>
|-
|  2 ||  1 || dxz    || <math>\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{zx}{r^2}</math>
|-
|  2 ||  2 || dx2-y2 || <math>\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2}</math>
|}
|}

Revision as of 14:51, 13 January 2017

l m Name Ylm
0 1 s [math]\displaystyle{ \frac{1}{\sqrt{4\pi}} }[/math]
1 -1 py [math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{y}{r} }[/math]
1 0 pz [math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{z}{r} }[/math]
1 1 py [math]\displaystyle{ \sqrt{\frac{3}{4\pi}}\frac{x}{r} }[/math]
2 -2 dxy [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2} }[/math]
2 -1 dyz [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{yz}{r^2} }[/math]
2 0 dz2 [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{5}{\pi}}\frac{3z^2-r^2}{r^2} }[/math]
2 1 dxz [math]\displaystyle{ \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{zx}{r^2} }[/math]
2 2 dx2-y2 [math]\displaystyle{ \frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2} }[/math]