Blocked-Davidson algorithm: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 1: Line 1:
The workflow of the blocked-Davidson iterative matrix diagonalization scheme implemented in {{VASP}} is as follows:  
The workflow of the blocked-Davidson iterative matrix diagonalization scheme implemented in {{VASP}} is as follows:{{cite|kresse:cms:1996}}{{cite|kresse:prb:96}}


* Take a subset (block) of <math>n_1</math> orbitals out of the total set of {{TAG|NBANDS}} orbitals:
* Take a subset (block) of <math>n_1</math> orbitals out of the total set of {{TAG|NBANDS}} orbitals:
Line 25: Line 25:
The blocked-Davidson algorithm is approximately a factor of 1.5-2 slower than the [[RMM-DIIS]], but more robust.
The blocked-Davidson algorithm is approximately a factor of 1.5-2 slower than the [[RMM-DIIS]], but more robust.


== References ==
<references/>
----
----
[[Category:Electronic minimization]][[Category:Theory]]
[[Category:Electronic minimization]][[Category:Theory]]

Revision as of 19:13, 19 October 2023

The workflow of the blocked-Davidson iterative matrix diagonalization scheme implemented in VASP is as follows:[1][2]

  • Take a subset (block) of [math]\displaystyle{ n_1 }[/math] orbitals out of the total set of NBANDS orbitals:
[math]\displaystyle{ \{ \psi_n| n=1,..,N_{\rm bands}\}\Rightarrow \{ \psi^1_k| k=1,..,n_1\} }[/math].
  • Extend the subspace spanned by [math]\displaystyle{ \{\psi^1\} }[/math] by adding the preconditioned residual vectors of [math]\displaystyle{ \{\psi^1\} }[/math]:
[math]\displaystyle{ \left \{ \psi^1_k \, / \, g^1_k = \left (1- \sum_{n=1}^{N_{\rm bands}} | \psi_n \rangle \langle\psi_n | {\bf S} \right) {\bf K} \left ({\bf H} - \epsilon_{\rm app} {\bf S} \right ) \psi^1_k \, | \, k=1,..,n_1 \right \}. }[/math]
  • Rayleigh-Ritz optimization ("subspace rotation") within the [math]\displaystyle{ 2n_1 }[/math]-dimensional space spanned by [math]\displaystyle{ \{\psi^1/g^1\} }[/math], to determine the [math]\displaystyle{ n_1 }[/math] lowest eigenvectors:
[math]\displaystyle{ {\rm diag}\{\psi^1/g^1\} \Rightarrow \{ \psi^2_k| k=1,..,n_1\} }[/math]
  • Extend the subspace with the residuals of [math]\displaystyle{ \{\psi^2\} }[/math]:
[math]\displaystyle{ \left \{ \psi^2_k \,/ \, g^1_k \, / \, g^2_k = \left (1- \sum_{n=1}^{N_{\rm bands}} | \psi_n \rangle \langle\psi_n | {\bf S} \right ) {\bf K} \left ({\bf H} - \epsilon_{\rm app} {\bf S} \right) \psi^2_k \, | \, k=1,..,n_1 \right \}. }[/math]
  • Rayleigh-Ritz optimization ("subspace rotation") within the [math]\displaystyle{ 3n_1 }[/math]-dimensional space spanned by [math]\displaystyle{ \{\psi^1/g^1/g^2\} }[/math]:
[math]\displaystyle{ {\rm diag}\{\psi^1/g^1/g^2\} \Rightarrow \{ \psi^3_k| k=1,..,n_1\} }[/math]
  • If need be the subspace may be extended by repetition of this cycle of adding residual vectors and Rayleigh-Ritz optimization of the resulting subspace:
[math]\displaystyle{ {\rm diag}\{\psi^1/g^1/g^2/../g^{d-1}\}\Rightarrow \{ \psi^d_k| k=1,..,n_1\} }[/math]
Per default VASP will not iterate deeper than [math]\displaystyle{ d=4 }[/math], though it may break off even sooner when certain criteria that measure the convergence of the orbitals have been met.
  • When the iteration is finished, store the optimized block of orbitals back into the set:
[math]\displaystyle{ \{ \psi^d_k| k=1,..,n_1\} \Rightarrow \{ \psi_k| k=1,..,N_{\rm bands}\} }[/math].
  • Continue with the next block [math]\displaystyle{ \{ \psi^1_k| k=n_1+1,..,2 n_1\} }[/math].
  • After all orbitals have been optimized, a Rayleigh-Ritz optimization in the complete subspace [math]\displaystyle{ \{ \psi_k| k=1,..,N_{\rm bands}\} }[/math] is performed.

The blocked-Davidson algorithm is approximately a factor of 1.5-2 slower than the RMM-DIIS, but more robust.

References