ML SIGV0: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 4: Line 4:
Description: This flag sets the noise parameter <math>s_{\mathrm{v}}</math> for the fitting in the machine learning force field method.
Description: This flag sets the noise parameter <math>s_{\mathrm{v}}</math> for the fitting in the machine learning force field method.
----
----
If the regularization needs to be controlled manually, like e.g. in the fitting via singular value decomposition ({{TAG|ML_IALGO_LINREG}}=4), the best is to keep this parameter constant at 1 and control the regularization via the precision parameter <math>s_{\mathrm{w}}</math> (see {{TAG|ML_SIGW0}}).
If the regularization needs to be controlled manually, like e.g. in the fitting via singular value decomposition ({{TAG|ML_MODE}}=''REFIT'' or {{TAG|ML_IALGO_LINREG}}=4), the best is to keep this parameter constant at 1 and control the regularization via the precision parameter <math>s_{\mathrm{w}}</math> (see {{TAG|ML_SIGW0}}).


For the theory of this regularization parameter see [[Machine learning force field: Theory#Regression|this section]].
For the theory of this regularization parameter see [[Machine learning force field: Theory#Regression|this section]].

Revision as of 15:56, 3 July 2023

ML_SIGV0 = [real]
Default: ML_SIGV0 = 1.0 

Description: This flag sets the noise parameter [math]\displaystyle{ s_{\mathrm{v}} }[/math] for the fitting in the machine learning force field method.


If the regularization needs to be controlled manually, like e.g. in the fitting via singular value decomposition (ML_MODE=REFIT or ML_IALGO_LINREG=4), the best is to keep this parameter constant at 1 and control the regularization via the precision parameter [math]\displaystyle{ s_{\mathrm{w}} }[/math] (see ML_SIGW0).

For the theory of this regularization parameter see this section.

Related tags and sections

ML_LMLFF, ML_IREG, ML_SIGW0, ML_IALGO_LINREG

Examples that use this tag