Phonons: Theory: Difference between revisions
(Created page with "To understand them we start by looking at the Taylor expansion of the total energy (<math>E</math>) around the set of equilibrium positions of the nuclei (<math>\{\mathbf{R}^0...") |
No edit summary |
||
| Line 64: | Line 64: | ||
\sum_{J\beta} D_{I\alpha J\beta} (\mathbf{q}) | \sum_{J\beta} D_{I\alpha J\beta} (\mathbf{q}) | ||
\xi^{\mu }_{J\beta}(\mathbf{q}) = | \xi^{\mu }_{J\beta}(\mathbf{q}) = | ||
\omega(\mathbf{q})^2 \xi^{\mu }_{I\alpha}(\mathbf{q}) | \omega^\mu(\mathbf{q})^2 \xi^{\mu }_{I\alpha}(\mathbf{q}) | ||
</math> | </math> | ||
with | with | ||
:<math> | :<math> | ||
D_{I\alpha J\beta} (\mathbf{q}) = | D_{I\alpha J\beta} (\mathbf{q}) = | ||
\frac{1}{\sqrt{M_I M_J}} C_{I\alpha J\beta} e^{i\mathbf{q} \cdot (\mathbf{R}_J-\mathbf{R}_I)} | \frac{1}{\sqrt{M_I M_J}} C_{I\alpha J\beta} e^{i\mathbf{q} \cdot (\mathbf{R}_J-\mathbf{R}_I)} | ||
</math> | </math> | ||
the dynamical matrix in the harmonic approximation. | |||
Now by solving the eigenvalue problem above we can obtain the phonon modes | |||
<math>\xi^{\mu }_{I\alpha}(\mathbf{q})</math> and frequencies | |||
<math>\omega^\mu(\mathbf{q})^2</math> at any arbitrary '''q''' point. | |||
Revision as of 09:45, 1 August 2022
To understand them we start by looking at the Taylor expansion of the total energy ([math]\displaystyle{ E }[/math]) around the set of equilibrium positions of the nuclei ([math]\displaystyle{ \{\mathbf{R}^0\} }[/math])
- [math]\displaystyle{ E(\{\mathbf{R}\})= E(\{\mathbf{R}^0\})+ \sum_{I\alpha} \frac{\partial E(\{\mathbf{R^0}\})}{\partial R_{I\alpha}} (R_{I\alpha}-R^0_{I\alpha})+ \sum_{I\alpha J\beta} \frac{\partial E(\{\mathbf{R}^0\})}{\partial R_{I\alpha} \partial R_{J\beta}} (R_{I\alpha}-R^0_{I\alpha}) (R_{J\beta}-R^0_{J\beta})+ \mathcal{O}(\mathbf{R}^3), }[/math]
where [math]\displaystyle{ \{\mathbf{R}\} }[/math] the positions of the nuclei. The first term in the expansion corresponds to the forces
- [math]\displaystyle{ F_{I\alpha} (\{\mathbf{R}^0\}) = - \left. \frac{\partial E(\{\mathbf{R}\})}{\partial R_{I\alpha}} \right|_{\mathbf{R} =\mathbf{R^0}} }[/math],
and the second to the second-order force-constants
- [math]\displaystyle{ C_{I\alpha J\beta} (\{\mathbf{R}^0\}) = \left. \frac{\partial E(\{\mathbf{R}\})}{\partial R_{I\alpha} \partial R_{J\beta}} \right|_{\mathbf{R} =\mathbf{R^0}} = - \left. \frac{\partial F_{I\alpha}(\{\mathbf{R}\})}{\partial R_{J\beta}} \right|_{\mathbf{R} =\mathbf{R^0}}. }[/math]
We can define a variable that corresponds to the displacement of the atoms with respect to the equilibrium position
[math]\displaystyle{
R_{I\alpha} = R^0_{I\alpha}+u_{I\alpha}
}[/math] which leads to
- [math]\displaystyle{ E(\{\mathbf{R}\})= E(\{\mathbf{R}^0\})+ \sum_{I\alpha} -F_{I\alpha} (\{\mathbf{R}^0\}) u_{I\alpha}+ \sum_{I\alpha J\beta} C_{I\alpha J\beta} (\{\mathbf{R}^0\}) u_{I\alpha} u_{J\beta} + \mathcal{O}(\mathbf{R}^3) }[/math]
If we take the system to be in equilibrium, the forces on the atoms are zero and then the Hamiltonian of the system is
- [math]\displaystyle{ H = \frac{1}{2} \sum_{I\alpha} M_I \ddot{u}^2_{I\alpha} + \frac{1}{2} \sum_{I\alpha J\beta} C_{I\alpha J\beta} u_{I\alpha} u_{J\beta}, }[/math]
and the equation of motion
- [math]\displaystyle{ M_I \ddot{u}^2_{I\alpha} = - C_{I\alpha J\beta} u_{J\beta} }[/math]
Using the following ansatz
- [math]\displaystyle{ \mathbf{u}^\mu_{I\alpha}(\mathbf{q},t) = \frac{1}{2} \frac{1}{\sqrt{M_I}} \left\{ A^\mu(\mathbf{q}) \xi^{\mu }_{I\alpha}(\mathbf{q}) e^{ i [\mathbf{q} \cdot \mathbf{\mathbf{R}}_I -\omega_\mu(\mathbf{q})t]}+ A^{\mu*}(\mathbf{q}) \xi^{\mu*}_{I\alpha}(\mathbf{q}) e^{-i [\mathbf{q} \cdot \mathbf{\mathbf{R}}_I -\omega_\mu(\mathbf{q})t]} \right\} }[/math]
where [math]\displaystyle{ \xi^{\mu }_{I\alpha}(\mathbf{q}) }[/math] are the phonon mode eigenvectors. Replacing we obtain the following eigenvalue problem
- [math]\displaystyle{ \sum_{J\beta} D_{I\alpha J\beta} (\mathbf{q}) \xi^{\mu }_{J\beta}(\mathbf{q}) = \omega^\mu(\mathbf{q})^2 \xi^{\mu }_{I\alpha}(\mathbf{q}) }[/math]
with
- [math]\displaystyle{ D_{I\alpha J\beta} (\mathbf{q}) = \frac{1}{\sqrt{M_I M_J}} C_{I\alpha J\beta} e^{i\mathbf{q} \cdot (\mathbf{R}_J-\mathbf{R}_I)} }[/math]
the dynamical matrix in the harmonic approximation. Now by solving the eigenvalue problem above we can obtain the phonon modes [math]\displaystyle{ \xi^{\mu }_{I\alpha}(\mathbf{q}) }[/math] and frequencies [math]\displaystyle{ \omega^\mu(\mathbf{q})^2 }[/math] at any arbitrary q point.