Spin spirals: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 50: Line 50:
</math>
</math>


%\[
the Hamiltonian changes only minimally
%\left( \begin{array}{c} \mid \Psi^{\uparrow} \rangle \\ \mid \Psi^{\downarrow} \rangle \end{array} \right)
%\rightarrow
%\left( \begin{array}{c} e^{-i\bf q \cdot \bf r / 2} \mid \Psi^{\uparrow} \rangle \\ e^{+i\bf q \cdot \bf r / 2}\mid \Psi^{\downarrow} \rangle \end{array} \right)
%\]


the Hamiltonian changes only minimally
:<math>
\[
\left( \begin{array}{cc}
\left( \begin{array}{cc}
H^{\alpha\alpha} & V^{\alpha\beta}_{\rm xc} \\
H^{\uparrow\uparrow} & V^{\uparrow\downarrow}_{\rm xc} \\
V^{\beta\alpha}_{\rm xc} & H^{\beta\beta} \end{array}\right)
V^{\downarrow\uparrow}_{\rm xc} & H^{\downarrow\downarrow} \end{array}\right)
\rightarrow
\rightarrow
\left( \begin{array}{cc}
\left( \begin{array}{cc}
H^{\alpha\alpha} & V^{\alpha\beta}_{\rm xc} e^{-i\bf q \cdot \bf r} \\
H^{\uparrow\uparrow} & V^{\uparrow\downarrow}_{\rm xc} e^{-i\bf q \cdot \bf r} \\
V^{\beta\alpha}_{\rm xc}e^{+i\bf q \cdot \bf r} & H^{\beta\beta} \end{array}\right)
V^{\downarrow\uparrow}_{\rm xc}e^{+i\bf q \cdot \bf r} & H^{\downarrow\downarrow} \end{array}\right)
\]
</math>


where in $H^{\alpha\alpha}$ and $H^{\beta\beta}$ the kinetic energy of a plane wave component changes to
where in $H^{\uparrow\uparrow}$ and $H^{\downarrow\downarrow}$ the kinetic energy of a plane wave component changes to


:<math>
:<math>

Revision as of 13:13, 6 July 2018

Generalized Bloch condition

Spin spirals may be conveniently modeled using a generalization of the Bloch condition (set LNONCOLLINEAR=.TRUE. and LSPIRAL=.TRUE.):

i.e., from one unit cell to the next the up- and down-spinors pick up an additional phase factor of and , respectively, where R is a lattice vector of the crystalline lattice, and q is the so-called spin-spiral propagation vector.

The spin-spiral propagation vector is commonly chosen to lie within the first Brillouin zone of the reciprocal space lattice, and has to be specified by means of the QSPIRAL-tag.

The generalized Bloch condition above gives rise to the following behavior of the magnetization density:

This is schematically depicted in the figure at the top of this page: the components of the magnization in the xy-plane rotate about the spin-spiral propagation vector q.

Basis set considerations

redefining the Bloch functions

the Hamiltonian changes only minimally

where in $H^{\uparrow\uparrow}$ and $H^{\downarrow\downarrow}$ the kinetic energy of a plane wave component changes to