Spin spirals: Difference between revisions
Vaspmaster (talk | contribs) |
Vaspmaster (talk | contribs) |
||
Line 12: | Line 12: | ||
0 & e^{+i\bf q \cdot \bf R / 2} \end{array}\right) \left[ | 0 & e^{+i\bf q \cdot \bf R / 2} \end{array}\right) \left[ | ||
\begin{array}{c} \Psi^{\uparrow}_{\bf k}(\bf r-R) \\ | \begin{array}{c} \Psi^{\uparrow}_{\bf k}(\bf r-R) \\ | ||
\Psi^{\downarrow}_{\bf k}(\bf r-R) \end{array} \right] | \Psi^{\downarrow}_{\bf k}(\bf r-R) \end{array} \right], | ||
</math> | </math> | ||
</span> | </span> | ||
''i.e.'', from one unit cell to the next the up-spinor and down-spinors pick up an additional phase factor of <math>\exp(-i{\bf q}\cdot {\bf R}/2)</math> and <math>\exp(-i{\bf q}\cdot {\bf R}/2)</math>, respectively. | |||
The above definition gives rise to the following magnetization density: | The above definition gives rise to the following magnetization density: |
Revision as of 12:31, 6 July 2018
Generalized Bloch condition
Spin spirals may be conveniently modeled using a generalisation of the Bloch condition:
- [math]\displaystyle{ \left[ \begin{array}{c} \Psi^{\uparrow}_{\bf k}(\bf r) \\ \Psi^{\downarrow}_{\bf k}(\bf r) \end{array} \right] = \left( \begin{array}{cc} e^{-i\bf q \cdot \bf R / 2} & 0\\ 0 & e^{+i\bf q \cdot \bf R / 2} \end{array}\right) \left[ \begin{array}{c} \Psi^{\uparrow}_{\bf k}(\bf r-R) \\ \Psi^{\downarrow}_{\bf k}(\bf r-R) \end{array} \right], }[/math]
i.e., from one unit cell to the next the up-spinor and down-spinors pick up an additional phase factor of [math]\displaystyle{ \exp(-i{\bf q}\cdot {\bf R}/2) }[/math] and [math]\displaystyle{ \exp(-i{\bf q}\cdot {\bf R}/2) }[/math], respectively.
The above definition gives rise to the following magnetization density:
- [math]\displaystyle{ {\bf m} ({\bf r} + {\bf R})= \left( \begin{array}{c} m_x({\bf r}) \cos({\bf q} \cdot {\bf R}) - m_y({\bf r}) \sin({\bf q} \cdot {\bf R}) \\ m_x({\bf r}) \sin({\bf q} \cdot {\bf R}) + m_y({\bf r}) \cos({\bf q} \cdot {\bf R}) \\ m_z({\bf r}) \end{array} \right) }[/math]