HESSEMAT: Difference between revisions
(Created page with "{{FILE|HESSEMAT}}) defines the Hesse matrix in Cartesian coordinates for the use in :Category:Thermodynamic integration with harmonic reference|Thermodynamic integration wi...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{FILE|HESSEMAT}} | {{FILE|HESSEMAT}} defines the Hesse matrix in Cartesian coordinates (<math>\underline{\mathbf{H}}^\mathbf{x}</math> ) for the use in [[:Category:Thermodynamic integration with harmonic reference|Thermodynamic integration with harmonic reference]]. | ||
For a system containing <math> N</math> atoms, {{FILE|HESSEMAT}} has <math>(3N+1)(N+1)</math> lines. | |||
The first line specifies potential energy <math>V_{0,\mathbf{x}}(\mathbf{x}_0)</math> (in eV) of the relaxed system for which <math>\underline{\mathbf{H}}^\mathbf{x}</math> is computed. | |||
The following <math>3N</math> lines are reserved for positions in fractional coordinates of all atoms constituting the system, whereby each line should contain three components of position vector of a single atom. |
Revision as of 11:08, 2 November 2023
HESSEMAT defines the Hesse matrix in Cartesian coordinates ([math]\displaystyle{ \underline{\mathbf{H}}^\mathbf{x} }[/math] ) for the use in Thermodynamic integration with harmonic reference. For a system containing [math]\displaystyle{ N }[/math] atoms, HESSEMAT has [math]\displaystyle{ (3N+1)(N+1) }[/math] lines. The first line specifies potential energy [math]\displaystyle{ V_{0,\mathbf{x}}(\mathbf{x}_0) }[/math] (in eV) of the relaxed system for which [math]\displaystyle{ \underline{\mathbf{H}}^\mathbf{x} }[/math] is computed. The following [math]\displaystyle{ 3N }[/math] lines are reserved for positions in fractional coordinates of all atoms constituting the system, whereby each line should contain three components of position vector of a single atom.