SPRING R0: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
</math> | </math> | ||
where the sum runs over all (<math>M_8</math>) coordinates the potential acts upon (<math>\xi_{\mu}(q)</math>), which are defined in the {{FILE|ICONST}}-file by setting the status to 8. | where the sum runs over all (<math>M_8</math>) coordinates the potential acts upon (<math>\xi_{\mu}(q)</math>), which are defined in the {{FILE|ICONST}}-file by setting the status to 8. | ||
The units of <math>\ | The units of <math>\xi_{0\mu}</math> correspond to units of the coordinate the potential acts upon (e.g., <math>{\AA}</math> for coordinates with <code>flag</code> R, <math>rad.</math> for coordinates with <code>flag</code> A, dimensionless for coordinates with <code>flag</code> W, etc...). | ||
The number of items defined via {{TAG|SPRING_R0}} must be equal to <math>M_8</math>, otherwise the calculation terminates with an error message. | The number of items defined via {{TAG|SPRING_R0}} must be equal to <math>M_8</math>, otherwise the calculation terminates with an error message. | ||
Revision as of 08:34, 11 April 2023
SPRING_R0 = [real (array)]
Description: The parameter SPRING_R0 defines position of minimum ([math]\displaystyle{ \xi_{0\mu} }[/math]) for the harmonic bias potential of the following form:
[math]\displaystyle{
\tilde{V}(\xi_1,\dots,\xi_{M_8}) = \sum_{\mu=1}^{M}\frac{1}{2}\kappa_{\mu} (\xi_{\mu}(q)-\xi_{0\mu})^2 \;
}[/math]
where the sum runs over all ([math]\displaystyle{ M_8 }[/math]) coordinates the potential acts upon ([math]\displaystyle{ \xi_{\mu}(q) }[/math]), which are defined in the ICONST-file by setting the status to 8.
The units of [math]\displaystyle{ \xi_{0\mu} }[/math] correspond to units of the coordinate the potential acts upon (e.g., [math]\displaystyle{ {\AA} }[/math] for coordinates with flag
R, [math]\displaystyle{ rad. }[/math] for coordinates with flag
A, dimensionless for coordinates with flag
W, etc...).
The number of items defined via SPRING_R0 must be equal to [math]\displaystyle{ M_8 }[/math], otherwise the calculation terminates with an error message.