Phonons from density-functional-perturbation theory: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 10: Line 10:
:<math>
:<math>
\left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right]
\left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right]
| \partial_{R_i^a}\psi_{n\mathbf{k}} \rangle
| \partial_{u_i^a}\psi_{n\mathbf{k}} \rangle
=
=
-\partial_{R_i^a} \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right]
-\partial_{u_i^a} \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right]
| \psi_{n\mathbf{k}} \rangle
| \psi_{n\mathbf{k}} \rangle
</math>
</math>
Line 18: Line 18:
Once the derivative of the orbitals is computed from the Sternheimer equation we can write
Once the derivative of the orbitals is computed from the Sternheimer equation we can write
:<math>
:<math>
| \psi^{R^a_i}_\lambda \rangle =  
| \psi^{u^a_i}_\lambda \rangle =  
| \psi \rangle +
| \psi \rangle +
\lambda | \partial_{R^a_i}\psi \rangle
\lambda | \partial_{u^a_i}\psi \rangle
</math>
</math>


The force constants are then computed using
The second-order force constants are then computed using
:<math>
:<math>
\Phi^{ab}_{ij}=
\Phi^{ab}_{ij}=
\frac{\partial^2E}{\partial R^a_i \partial R^b_j}=
\frac{\partial^2E}{\partial u^a_i \partial u^b_j}=
-\frac{\partial F^a_i}{\partial R^b_j}
-\frac{\partial F^a_i}{\partial u^b_j}
\approx
\approx
-\frac{
-\frac{
  \left(
  \left(
   \mathbf{F}[\{\psi^{R^b_j}_{\lambda/2}\}]-
   \mathbf{F}[\{\psi^{u^b_j}_{\lambda/2}\}]-
   \mathbf{F}[\{\psi^{R^b_j}_{-\lambda/2}\}]
   \mathbf{F}[\{\psi^{u^b_j}_{-\lambda/2}\}]
  \right)^a_i}{\lambda}
  \right)^a_i}{\lambda}.
</math>
</math>
where <math>\mathbf{F}</math> yields the forces for a given set of orbitals.
where <math>\mathbf{F}</math> yields the forces for a given set of orbitals.
The internal strain tensor is computed using
:<math>
\Xi^a_{il}=\frac{\partial^2 E}{\partial u^a_i \partial u^b_j}=
\frac{\partial \sigma_l}{\partial u^a_i}
\approx
\frac{
    \left(
        \sigma[\{\psi^{u^a_i}_{\lambda/2}\}]-
        \sigma[\{\psi^{u^a_i}_{-\lambda/2}\}]
    \right)_l
}{\lambda}.
</math>


At the end of the calculation if {{TAG|LEPSILON}}=.TRUE., the Born effective charges are computed using Eq. (42) of Ref. {{cite|gonze:prb:1997}}.
At the end of the calculation if {{TAG|LEPSILON}}=.TRUE., the Born effective charges are computed using Eq. (42) of Ref. {{cite|gonze:prb:1997}}.
Line 45: Line 58:
\sum_n
\sum_n
\langle  
\langle  
   \partial_{R^a_i}\psi_{n\mathbf{k}} | \nabla_{\mathbf{k}} \tilde{u}_{n\mathbf{k}}
   \partial_{u^a_i}\psi_{n\mathbf{k}} | \nabla_{\mathbf{k}} \tilde{u}_{n\mathbf{k}}
\rangle d\mathbf{k}
\rangle d\mathbf{k}
</math>
</math>

Revision as of 13:59, 20 July 2022

In density functional theory we solve the Hamiltonian

[math]\displaystyle{ H(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle= e_{n\mathbf{k}}S(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle }[/math]

Taking derivatives with respect to the ionic positions [math]\displaystyle{ R_i^a }[/math] we obtain the Sternheimer equation

[math]\displaystyle{ \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right] | \partial_{u_i^a}\psi_{n\mathbf{k}} \rangle = -\partial_{u_i^a} \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right] | \psi_{n\mathbf{k}} \rangle }[/math]

Once the derivative of the orbitals is computed from the Sternheimer equation we can write

[math]\displaystyle{ | \psi^{u^a_i}_\lambda \rangle = | \psi \rangle + \lambda | \partial_{u^a_i}\psi \rangle }[/math]

The second-order force constants are then computed using

[math]\displaystyle{ \Phi^{ab}_{ij}= \frac{\partial^2E}{\partial u^a_i \partial u^b_j}= -\frac{\partial F^a_i}{\partial u^b_j} \approx -\frac{ \left( \mathbf{F}[\{\psi^{u^b_j}_{\lambda/2}\}]- \mathbf{F}[\{\psi^{u^b_j}_{-\lambda/2}\}] \right)^a_i}{\lambda}. }[/math]

where [math]\displaystyle{ \mathbf{F} }[/math] yields the forces for a given set of orbitals.

The internal strain tensor is computed using

[math]\displaystyle{ \Xi^a_{il}=\frac{\partial^2 E}{\partial u^a_i \partial u^b_j}= \frac{\partial \sigma_l}{\partial u^a_i} \approx \frac{ \left( \sigma[\{\psi^{u^a_i}_{\lambda/2}\}]- \sigma[\{\psi^{u^a_i}_{-\lambda/2}\}] \right)_l }{\lambda}. }[/math]

At the end of the calculation if LEPSILON=.TRUE., the Born effective charges are computed using Eq. (42) of Ref. [1].

[math]\displaystyle{ Z^{a*}_{ij} = 2 \frac{\Omega_0}{(2\pi)^3} \int_\text{BZ} \sum_n \langle \partial_{u^a_i}\psi_{n\mathbf{k}} | \nabla_{\mathbf{k}} \tilde{u}_{n\mathbf{k}} \rangle d\mathbf{k} }[/math]

where [math]\displaystyle{ a }[/math] is the atom index, [math]\displaystyle{ i }[/math] the direction of the displacement of atom and [math]\displaystyle{ j }[/math] the polarization direction. The results should be equivalent to the ones obtained using LCALCEPS and LEPSILON.

When IBRION=7 or 8 VASP solves the Sternheimer equation above with an ionic displacement perturbation. If IBRION=7 no symmetry is used and the displacement of all the ions is computed. When IBRION=8 only the irreducible displacements are computed with the physical quantities being reconstructed by symmetry.

References