Phonons from density-functional-perturbation theory: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
:<math> | :<math> | ||
\left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right] | \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right] | ||
| \partial_{ | | \partial_{u_i^a}\psi_{n\mathbf{k}} \rangle | ||
= | = | ||
-\partial_{ | -\partial_{u_i^a} \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right] | ||
| \psi_{n\mathbf{k}} \rangle | | \psi_{n\mathbf{k}} \rangle | ||
</math> | </math> | ||
Line 18: | Line 18: | ||
Once the derivative of the orbitals is computed from the Sternheimer equation we can write | Once the derivative of the orbitals is computed from the Sternheimer equation we can write | ||
:<math> | :<math> | ||
| \psi^{ | | \psi^{u^a_i}_\lambda \rangle = | ||
| \psi \rangle + | | \psi \rangle + | ||
\lambda | \partial_{ | \lambda | \partial_{u^a_i}\psi \rangle | ||
</math> | </math> | ||
The force constants are then computed using | The second-order force constants are then computed using | ||
:<math> | :<math> | ||
\Phi^{ab}_{ij}= | \Phi^{ab}_{ij}= | ||
\frac{\partial^2E}{\partial | \frac{\partial^2E}{\partial u^a_i \partial u^b_j}= | ||
-\frac{\partial F^a_i}{\partial | -\frac{\partial F^a_i}{\partial u^b_j} | ||
\approx | \approx | ||
-\frac{ | -\frac{ | ||
\left( | \left( | ||
\mathbf{F}[\{\psi^{ | \mathbf{F}[\{\psi^{u^b_j}_{\lambda/2}\}]- | ||
\mathbf{F}[\{\psi^{ | \mathbf{F}[\{\psi^{u^b_j}_{-\lambda/2}\}] | ||
\right)^a_i}{\lambda} | \right)^a_i}{\lambda}. | ||
</math> | </math> | ||
where <math>\mathbf{F}</math> yields the forces for a given set of orbitals. | where <math>\mathbf{F}</math> yields the forces for a given set of orbitals. | ||
The internal strain tensor is computed using | |||
:<math> | |||
\Xi^a_{il}=\frac{\partial^2 E}{\partial u^a_i \partial u^b_j}= | |||
\frac{\partial \sigma_l}{\partial u^a_i} | |||
\approx | |||
\frac{ | |||
\left( | |||
\sigma[\{\psi^{u^a_i}_{\lambda/2}\}]- | |||
\sigma[\{\psi^{u^a_i}_{-\lambda/2}\}] | |||
\right)_l | |||
}{\lambda}. | |||
</math> | |||
At the end of the calculation if {{TAG|LEPSILON}}=.TRUE., the Born effective charges are computed using Eq. (42) of Ref. {{cite|gonze:prb:1997}}. | At the end of the calculation if {{TAG|LEPSILON}}=.TRUE., the Born effective charges are computed using Eq. (42) of Ref. {{cite|gonze:prb:1997}}. | ||
Line 45: | Line 58: | ||
\sum_n | \sum_n | ||
\langle | \langle | ||
\partial_{ | \partial_{u^a_i}\psi_{n\mathbf{k}} | \nabla_{\mathbf{k}} \tilde{u}_{n\mathbf{k}} | ||
\rangle d\mathbf{k} | \rangle d\mathbf{k} | ||
</math> | </math> |
Revision as of 13:59, 20 July 2022
In density functional theory we solve the Hamiltonian
- [math]\displaystyle{ H(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle= e_{n\mathbf{k}}S(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle }[/math]
Taking derivatives with respect to the ionic positions [math]\displaystyle{ R_i^a }[/math] we obtain the Sternheimer equation
- [math]\displaystyle{ \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right] | \partial_{u_i^a}\psi_{n\mathbf{k}} \rangle = -\partial_{u_i^a} \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right] | \psi_{n\mathbf{k}} \rangle }[/math]
Once the derivative of the orbitals is computed from the Sternheimer equation we can write
- [math]\displaystyle{ | \psi^{u^a_i}_\lambda \rangle = | \psi \rangle + \lambda | \partial_{u^a_i}\psi \rangle }[/math]
The second-order force constants are then computed using
- [math]\displaystyle{ \Phi^{ab}_{ij}= \frac{\partial^2E}{\partial u^a_i \partial u^b_j}= -\frac{\partial F^a_i}{\partial u^b_j} \approx -\frac{ \left( \mathbf{F}[\{\psi^{u^b_j}_{\lambda/2}\}]- \mathbf{F}[\{\psi^{u^b_j}_{-\lambda/2}\}] \right)^a_i}{\lambda}. }[/math]
where [math]\displaystyle{ \mathbf{F} }[/math] yields the forces for a given set of orbitals.
The internal strain tensor is computed using
- [math]\displaystyle{ \Xi^a_{il}=\frac{\partial^2 E}{\partial u^a_i \partial u^b_j}= \frac{\partial \sigma_l}{\partial u^a_i} \approx \frac{ \left( \sigma[\{\psi^{u^a_i}_{\lambda/2}\}]- \sigma[\{\psi^{u^a_i}_{-\lambda/2}\}] \right)_l }{\lambda}. }[/math]
At the end of the calculation if LEPSILON=.TRUE., the Born effective charges are computed using Eq. (42) of Ref. [1].
- [math]\displaystyle{ Z^{a*}_{ij} = 2 \frac{\Omega_0}{(2\pi)^3} \int_\text{BZ} \sum_n \langle \partial_{u^a_i}\psi_{n\mathbf{k}} | \nabla_{\mathbf{k}} \tilde{u}_{n\mathbf{k}} \rangle d\mathbf{k} }[/math]
where [math]\displaystyle{ a }[/math] is the atom index, [math]\displaystyle{ i }[/math] the direction of the displacement of atom and [math]\displaystyle{ j }[/math] the polarization direction. The results should be equivalent to the ones obtained using LCALCEPS and LEPSILON.
When IBRION=7 or 8 VASP solves the Sternheimer equation above with an ionic displacement perturbation. If IBRION=7 no symmetry is used and the displacement of all the ions is computed. When IBRION=8 only the irreducible displacements are computed with the physical quantities being reconstructed by symmetry.