Coulomb singularity: Difference between revisions
No edit summary |
No edit summary |
||
Line 63: | Line 63: | ||
\frac{\text{erf}(\lambda R_{\text{c}})}{2\lambda^{2}}\right) | \frac{\text{erf}(\lambda R_{\text{c}})}{2\lambda^{2}}\right) | ||
</math> | </math> | ||
== Related tags and articles == | |||
{{TAG|HFRCUT}} | |||
== References == | |||
<references/> | |||
---- | |||
[[Category:Exchange-correlation functionals]][[Category:Hybrid_functionals]][[Category:Theory]] |
Revision as of 12:13, 10 May 2022
The bare Coulomb operator
- [math]\displaystyle{ V(\vert\mathbf{r}-\mathbf{r}'\vert)=\frac{1}{\vert\mathbf{r}-\mathbf{r}'\vert} }[/math]
in the unscreened HF exchange has a representation in the reciprocal space that is given by
- [math]\displaystyle{ V(q)=\frac{4\pi}{q^2} }[/math]
It has a singularity at [math]\displaystyle{ q=\vert\mathbf{k}'-\mathbf{k}+\mathbf{G}\vert=0 }[/math], and to alleviate this issue and to improve the convergence of the exact exchange with respect to the supercell size (or the k-point mesh density) different methods have been proposed: the auxiliary function methods[1], probe-charge Ewald [2] (HFALPHA), and Coulomb truncation methods[3] (HFRCUT). These mostly involve modifying the Coulomb Kernel in a way that yields the same result as the unmodified kernel in the limit of large supercell sizes. These methods are described below.
Probe-charge Ewald method
Auxiliary function methods
Truncation methods
In this method the bare Coulomb operator [math]\displaystyle{ V(\vert\mathbf{r}-\mathbf{r}'\vert) }[/math] is truncated by multiplying it by the step function [math]\displaystyle{ \theta(R_{\text{c}}-\left\vert\mathbf{r}-\mathbf{r}'\right\vert) }[/math], and in the reciprocal this leads to
- [math]\displaystyle{ V(q)=\frac{4\pi}{q^{2}}\left(1-\cos(q R_{\text{c}})\right) }[/math]
whose value at [math]\displaystyle{ q=0 }[/math] is finite and is given by [math]\displaystyle{ V(q=0)=2\pi R_{\text{c}}^{2} }[/math]. The screened Coulomb operators
- [math]\displaystyle{ V(\vert\mathbf{r}-\mathbf{r}'\vert)=\frac{e^{-\lambda\left\vert\mathbf{r}-\mathbf{r}'\right\vert}}{\left\vert\mathbf{r}-\mathbf{r}'\right\vert} }[/math]
and
- [math]\displaystyle{ V(\vert\mathbf{r}-\mathbf{r}'\vert)=\frac{\text{erfc}\left({-\lambda\left\vert\mathbf{r}-\mathbf{r}'\right\vert}\right)}{\left\vert\mathbf{r}-\mathbf{r}'\right\vert} }[/math]
have representations in the reciprocal space that are given by
- [math]\displaystyle{ V(q)=\frac{4\pi}{q^{2}+\lambda^{2}} }[/math]
and
- [math]\displaystyle{ V(q)=\frac{4\pi}{q^{2}}\left(1-e^{-q^{2}/\left(4\lambda^2\right)}\right) }[/math]
respectively. Thus, the screened potentials have no singularity at [math]\displaystyle{ q=0 }[/math]. Nevertheless, it is still beneficial for accelerating the convergence with respect to the number of k-points to multiply these screened operators by [math]\displaystyle{ \theta(R_{\text{c}}-\left\vert\mathbf{r}-\mathbf{r}'\right\vert) }[/math], which in the reciprocal space gives
- [math]\displaystyle{ V(q)=\frac{4\pi}{q^{2}+\lambda^{2}} \left( 1-e^{-\lambda R_{\text{c}}}\left(\frac{\lambda}{q} \sin\left(qR_{\text{c}}\right) + \cos\left(qR_{\text{c}}\right)\right)\right) }[/math]
and
- [math]\displaystyle{ V(q)=\frac{4\pi}{q^{2}} \left( 1-\cos(qR_{\text{c}})\text{erfc}\left(\lambda R_{\text{c}}\right) - e^{-q^{2}/\left(4\lambda^2\right)} \Re\left({\text{erf}\left(\lambda R_{\text{c}} + \text{i}\frac{q}{2\lambda}\right)}\right)\right) }[/math]
respectively, with the following values at [math]\displaystyle{ q=0 }[/math]:
- [math]\displaystyle{ V(q=0)=\frac{4\pi}{\lambda^{2}}\left(1-e^{-\lambda R_{\text{c}}}\left(\lambda R_{\text{c}} + 1\right)\right) }[/math]
and
- [math]\displaystyle{ V(q=0)=2\pi\left(R_{\text{c}}^{2}\text{erfc}(\lambda R_{\text{c}}) - \frac{R_{\text{c}}e^{-\lambda^{2}R_{\text{c}}^{2}}}{\sqrt{\pi}\lambda} + \frac{\text{erf}(\lambda R_{\text{c}})}{2\lambda^{2}}\right) }[/math]