DFT-D2: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(76 intermediate revisions by 4 users not shown)
Line 1: Line 1:
In the D2 method of Grimme<ref name="grimme"/>, the correction term takes the form:
In the DFT-D2 method of Grimme{{cite|grimme:jcc:06}} the correction term takes the form:


<math>E_{\mathrm{disp}} = -\frac{1}{2}  \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}}  \sum_{\mathbf{L}} ^{\prime}  \frac{C_{6ij}}{r_{ij,L}^{6}}  f_{d,6}({r}_{ij,L}) </math>
:<math>E_{\mathrm{disp}} = -\frac{1}{2}  \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}}  \sum_{\mathbf{L}} {}^{\prime}  \frac{C_{6ij}}{r_{ij,L}^{6}}  f_{d,6}({r}_{ij,\mathbf{L}}) </math>


where the summations are over all atoms <math>N_{at}</math> and all translations of the unit cell <math>{L}=(l_1,l_2,l_3)</math>. The prime indicates that <math>i\not=j</math> for <math>{L}=0</math>, <math>C_{6ij}</math> denotes the dispersion coefficient for the atom pair <math>ij</math>, <math>{r}_{ij,L}</math> is the distance between atom <math>i</math> located in the reference cell <math>L=0</math> and atom <math>j</math> in the cell <math>L</math> and the term <math>f(r_{ij})</math> is a damping function whose role is to scale the force field such as to minimize the contributions from interactions within typical bonding distances. In practice, the terms in eq.~\ref{eq:VDWenergy}
where the first two summations are over all <math>N_{at}</math> atoms in the unit cell and the third summation is over all translations of the unit cell <math>{\mathbf{L}}=(l_1,l_2,l_3)</math> where the prime indicates that <math>i\not=j</math> for <math>{\mathbf{L}}=0</math>. <math>C_{6ij}</math> denotes the dispersion coefficient for the atom pair <math>ij</math>, <math>{r}_{ij,\mathbf{L}}</math> is the distance between atom <math>i</math> located in the reference cell <math>\mathbf{L}=0</math> and atom <math>j</math> in the cell <math>L</math> and the term <math>f(r_{ij})</math> is a damping function whose role is to scale the force field such as to minimize the contributions from interactions within typical bonding distances. In practice, the terms in the equation for <math>E_{\mathrm{disp}}</math> corresponding to interactions over distances longer than a certain suitably chosen cutoff radius ({{TAG|VDW_RADIUS}}, see below) contribute only negligibly to  <math>E_{\mathrm{disp}}</math> and can be ignored. Parameters <math>C_{6ij}</math> and <math>R_{0ij}</math> are computed using the following combination rules:
corresponding to interactions over distances
longer than a certain suitably chosen cutoff radius contribute
only negligibly to  $E_{\rm disp}$ and can be ignored.
Parameters $C_{6ij}$ and $R_{0ij}$ are computed using the
following combination rules:
\begin{equation}
    C_{6ij} = \sqrt{C_{6ii} C_{6jj}},
\end{equation}
\begin{equation}
    R_{0ij} = R_{0i}+ R_{0j},
\end{equation}
the values of $C_{6ii}$ and $R_{0i}$ are tabulated for
each element and are insensitive to the particular
chemical situation (for instance,
$C_6$ for carbon in methane takes exactly the same value
as that for C in benzene within this approximation).
In the original method of Grimme~\cite{Grimme:06}, Fermi-type
damping function is used:
\begin{equation}\label{eq_damping}
f_{d,6}(r_{ij}) = \frac{s_6}{1+e^{-d(r_{ij}/(s_R\,R_{0ij})-1)}},
\end{equation}
whereby the global scaling parameter $s_6$
has been optimized for several different DFT functionals such as
PBE ($s_6=0.75$), BLYP ($s_6=1.2$), and B3LYP ($s_6=1.05$).
The parameter $s_R$ is usually fixed at 1.00.
The DFT-D2 method can be activated by setting {\tt IVDW}=1$|$10 or
by specifying {\tt LVDW}=.TRUE. (this parameter is obsolete as of VASP.5.3.3).
Optionally, the damping function and the vdW parameters can be controlled using the following flags
(the default values are listed):\\


\begin{tabular}{rll}
:<math>C_{6ij} = \sqrt{C_{6ii} C_{6jj}}</math>
{\tt VDW\_RADIUS} &= 50.0     & cutoff radius ({\AA}) for pair interactions\\
 
{\tt VDW\_S6} &= 0.75     & global scaling factor $s_6$\\
and
                & & (available in VASP.5.3.4 and later)\\
 
{\tt VDW\_SR} &= 1.00     & scaling factor $s_R$\\
:<math>R_{0ij} = R_{0i}+ R_{0j}. </math>
& & (available in VASP.5.3.4 and later)\\
 
{\tt VDW\_SCALING} & =0.75 & the same as {\tt VDW\_S6}\\
The values for <math>C_{6ii}</math> and <math>R_{0i}</math> are tabulated for each element and are insensitive to the particular chemical situation (for instance, <math>C_6</math> for carbon in methane takes exactly the same value as that for C in benzene within this approximation). In the DFT-D2 method, a Fermi-type damping function is used:
  & & (obsolete as of VASP.5.3.4)\\
 
{\tt VDW\_D}       &= 20.0     & damping parameter $d$\\
:<math>f_{d,6}(r_{ij}) = \frac{s_6}{1+e^{-d(r_{ij}/(s_R\,R_{0ij})-1)}}</math>
{\tt VDW\_C6}     &= [real array] & $C_6$ parameters ($Jnm^6mol^{-1}$) for each species\\
 
            & &  defined in POSCAR\\
whereby the global scaling parameter <math>s_6</math> has been optimized for several different DFT functionals such as PBE (<math>s_6=0.75</math>), BLYP (<math>s_6=1.2</math>) or B3LYP (<math>s_6=1.05</math>). The parameter <math>s_R</math> is usually fixed at 1.00.
{\tt VDW\_R0}     &= [real array] & $R_0$ parameters ({\AA}) for each species \\
 
          & & defined in POSCAR\\
The performance of PBE-D2 method in optimization of various crystalline systems has been tested systematically in reference {{cite|bucko:jpca:10}}.
{\tt LVDW\_EWALD}     &= .FALSE.$|$.TRUE. & compute lattice summation in $E_{disp}$ expression\\
{{NB|important|It is recommended to use the more advanced and more accurate method {{TAG|DFT-D3}}.{{cite|grimme:jcp:10}}}}
& & by means of Ewald's summation - no$|$yes\\
 
  & & (available in VASP.5.3.4 and later)\\
== Usage ==
\end{tabular}
 
\\
The DFT-D2 method is activated by setting {{TAG|IVDW}}=1 or 10 (or the obsolete {{TAG|LVDW}}=''.TRUE.''). Optionally, the damping function and the vdW parameters can be controlled using the following flags (the given values are the default ones):
\\
 
\noindent The performance of PBE-D2 method in optimization of
*{{TAG|VDW_RADIUS}}=50.0 : cutoff radius (in <math>\AA</math>) for pair interactions
various crystalline systems has been tested systematically in J. Phys. Chem. A 114, 11814 (2010).\\
*{{TAG|VDW_S6}}=0.75 : global scaling factor <math>s_6</math> (available in VASP.5.3.4 and later)
\vspace{5mm}
*{{TAG|VDW_SR}}=1.00 : scaling factor <math>s_R</math> (available in VASP.5.3.4 and later)
\\
*{{TAG|VDW_SCALING}}=0.75 : the same as {{TAG|VDW_S6}} (obsolete as of VASP.5.3.4)
\noindent IMPORTANT NOTES:
*{{TAG|VDW_D}}=20.0 : damping parameter <math>d</math>
\begin{itemize}
*{{TAG|VDW_C6}}=[real array] : <math>C_6</math> parameters (<math>\mathrm{Jnm}^{6}\mathrm{mol}^{-1}</math>) for each species defined in the {{TAG|POSCAR}} file
\item
*{{TAG|VDW_R0}}=[real array] : <math>R_0</math> parameters (<math>\AA</math>) for each species defined in the {{TAG|POSCAR}} file
the defaults for {\tt VDW\_C6} and {\tt VDW\_R0} are defined
*{{TAG|LVDW_EWALD}}=''.FALSE.'' : the lattice summation in <math>E_{\mathrm{disp}}</math> expression is computed by means of Ewald's summation (''.TRUE.'' ) or via a real space summation over all atomic pairs within cutoff radius {{TAG|VDW_RADIUS}} (''.FALSE.''). (available in VASP.5.3.4 and later)
only for elements in the first five rows of periodic table (i.e. H-Xe)
 
- if the system contains other elements the user must define these parameters in INCAR.
{{NB|mind|
\item
*The defaults for {{TAG|VDW_C6}} and {{TAG|VDW_R0}} are defined only for elements in the first five rows of the periodic table (i.e. H-Xe). If the system contains other elements the user has to define these parameters in {{TAG|INCAR}}.
the defaults for parameters controlling damping function ({\tt VDW\_S6}, {\tt VDW\_SR}, {\tt VDW\_D})
*The defaults for parameters controlling the damping function ({{TAG|VDW_S6}}, {{TAG|VDW_SR}}, {{TAG|VDW_D}}) are available for the PBE ({{TAG|GGA}}{{=}}PE), BP, revPBE, PBE0, TPSS, and B3LYP functionals. If any other functional is used in a DFT-D2 calculation, the value of {{TAG|VDW_S6}}  (or {{TAG|VDW_SCALING}} in versions before VASP.5.3.4) has to be defined in {{TAG|INCAR}}.
are available only for the PBE functional. If functional other than PBE is
*As of VASP.5.3.4, the default value for {{TAG|VDW_RADIUS}} has been increased from 30 to 50 <math>\AA</math>.
used in DFT+D2 calculation, the value of {\tt VDW\_S6}  (or {\tt VDW\_SCALING} in versions before VASP.5.3.4)
*Ewald's summation in the calculation of <math>E_{\mathrm{disp}}</math> calculation (controlled via {{TAG|LVDW_EWALD}}) is implemented according to reference {{cite|kerber:jcc:08}} and is available as of VASP.5.3.4.}}
must be defined in INCAR.
 
\item
== Related tags and articles ==
as of VASP.5.3.4, the default value for {\tt VDW\_RADIUS} has been increased from
{{TAG|VDW_RADIUS}},
30 to 50 {\AA}.
{{TAG|VDW_S6}},
\item
{{TAG|VDW_SR}},
Ewald's summation in $E_{disp}$ calculation (controlled via {\tt LVDW\_EWALD})
{{TAG|VDW_SCALING}},
implemented according to Ref.~\cite{Kerber:08}
{{TAG|VDW_D}},
is available as of VASP.5.3.4
{{TAG|VDW_C6}},
\end{itemize}
{{TAG|VDW_R0}},
{{TAG|LVDW_EWALD}},
{{TAG|IVDW}},
{{TAG|DFT-ulg}},
{{TAG|DFT-D3}},
[[DFT-D4]]


== References ==
== References ==
<references>
<references/>
<ref name="grimme">[http://onlinelibrary.wiley.com/doi/10.1002/jcc.20495/abstract S. Grimme., J. Comp. Chem. 27, 1787 (2006).]</ref>
 
</references>
----
----
[[The_VASP_Manual|Contents]]
[[Category:Exchange-correlation functionals]][[Category:van der Waals functionals]][[Category:Theory]][[Category:Howto]]
 
[[Category:INCAR]]

Latest revision as of 14:34, 6 March 2025

In the DFT-D2 method of Grimme[1] the correction term takes the form:

[math]\displaystyle{ E_{\mathrm{disp}} = -\frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}} \sum_{\mathbf{L}} {}^{\prime} \frac{C_{6ij}}{r_{ij,L}^{6}} f_{d,6}({r}_{ij,\mathbf{L}}) }[/math]

where the first two summations are over all [math]\displaystyle{ N_{at} }[/math] atoms in the unit cell and the third summation is over all translations of the unit cell [math]\displaystyle{ {\mathbf{L}}=(l_1,l_2,l_3) }[/math] where the prime indicates that [math]\displaystyle{ i\not=j }[/math] for [math]\displaystyle{ {\mathbf{L}}=0 }[/math]. [math]\displaystyle{ C_{6ij} }[/math] denotes the dispersion coefficient for the atom pair [math]\displaystyle{ ij }[/math], [math]\displaystyle{ {r}_{ij,\mathbf{L}} }[/math] is the distance between atom [math]\displaystyle{ i }[/math] located in the reference cell [math]\displaystyle{ \mathbf{L}=0 }[/math] and atom [math]\displaystyle{ j }[/math] in the cell [math]\displaystyle{ L }[/math] and the term [math]\displaystyle{ f(r_{ij}) }[/math] is a damping function whose role is to scale the force field such as to minimize the contributions from interactions within typical bonding distances. In practice, the terms in the equation for [math]\displaystyle{ E_{\mathrm{disp}} }[/math] corresponding to interactions over distances longer than a certain suitably chosen cutoff radius (VDW_RADIUS, see below) contribute only negligibly to [math]\displaystyle{ E_{\mathrm{disp}} }[/math] and can be ignored. Parameters [math]\displaystyle{ C_{6ij} }[/math] and [math]\displaystyle{ R_{0ij} }[/math] are computed using the following combination rules:

[math]\displaystyle{ C_{6ij} = \sqrt{C_{6ii} C_{6jj}} }[/math]

and

[math]\displaystyle{ R_{0ij} = R_{0i}+ R_{0j}. }[/math]

The values for [math]\displaystyle{ C_{6ii} }[/math] and [math]\displaystyle{ R_{0i} }[/math] are tabulated for each element and are insensitive to the particular chemical situation (for instance, [math]\displaystyle{ C_6 }[/math] for carbon in methane takes exactly the same value as that for C in benzene within this approximation). In the DFT-D2 method, a Fermi-type damping function is used:

[math]\displaystyle{ f_{d,6}(r_{ij}) = \frac{s_6}{1+e^{-d(r_{ij}/(s_R\,R_{0ij})-1)}} }[/math]

whereby the global scaling parameter [math]\displaystyle{ s_6 }[/math] has been optimized for several different DFT functionals such as PBE ([math]\displaystyle{ s_6=0.75 }[/math]), BLYP ([math]\displaystyle{ s_6=1.2 }[/math]) or B3LYP ([math]\displaystyle{ s_6=1.05 }[/math]). The parameter [math]\displaystyle{ s_R }[/math] is usually fixed at 1.00.

The performance of PBE-D2 method in optimization of various crystalline systems has been tested systematically in reference [2].

Important: It is recommended to use the more advanced and more accurate method DFT-D3.[3]

Usage

The DFT-D2 method is activated by setting IVDW=1 or 10 (or the obsolete LVDW=.TRUE.). Optionally, the damping function and the vdW parameters can be controlled using the following flags (the given values are the default ones):

  • VDW_RADIUS=50.0 : cutoff radius (in [math]\displaystyle{ \AA }[/math]) for pair interactions
  • VDW_S6=0.75 : global scaling factor [math]\displaystyle{ s_6 }[/math] (available in VASP.5.3.4 and later)
  • VDW_SR=1.00 : scaling factor [math]\displaystyle{ s_R }[/math] (available in VASP.5.3.4 and later)
  • VDW_SCALING=0.75 : the same as VDW_S6 (obsolete as of VASP.5.3.4)
  • VDW_D=20.0 : damping parameter [math]\displaystyle{ d }[/math]
  • VDW_C6=[real array] : [math]\displaystyle{ C_6 }[/math] parameters ([math]\displaystyle{ \mathrm{Jnm}^{6}\mathrm{mol}^{-1} }[/math]) for each species defined in the POSCAR file
  • VDW_R0=[real array] : [math]\displaystyle{ R_0 }[/math] parameters ([math]\displaystyle{ \AA }[/math]) for each species defined in the POSCAR file
  • LVDW_EWALD=.FALSE. : the lattice summation in [math]\displaystyle{ E_{\mathrm{disp}} }[/math] expression is computed by means of Ewald's summation (.TRUE. ) or via a real space summation over all atomic pairs within cutoff radius VDW_RADIUS (.FALSE.). (available in VASP.5.3.4 and later)


Mind:
  • The defaults for VDW_C6 and VDW_R0 are defined only for elements in the first five rows of the periodic table (i.e. H-Xe). If the system contains other elements the user has to define these parameters in INCAR.
  • The defaults for parameters controlling the damping function (VDW_S6, VDW_SR, VDW_D) are available for the PBE (GGA=PE), BP, revPBE, PBE0, TPSS, and B3LYP functionals. If any other functional is used in a DFT-D2 calculation, the value of VDW_S6 (or VDW_SCALING in versions before VASP.5.3.4) has to be defined in INCAR.
  • As of VASP.5.3.4, the default value for VDW_RADIUS has been increased from 30 to 50 [math]\displaystyle{ \AA }[/math].
  • Ewald's summation in the calculation of [math]\displaystyle{ E_{\mathrm{disp}} }[/math] calculation (controlled via LVDW_EWALD) is implemented according to reference [4] and is available as of VASP.5.3.4.

Related tags and articles

VDW_RADIUS, VDW_S6, VDW_SR, VDW_SCALING, VDW_D, VDW_C6, VDW_R0, LVDW_EWALD, IVDW, DFT-ulg, DFT-D3, DFT-D4

References