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Determination of the Electronic Groundstate

eigenvalue problem to be solved

general strategies to solve the KS-equations
algorithms used in VASP

choice of the appropriate input parameters

strategies if concergence fails, error handling
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the Kohn-Sham Groundstate

the Free Energy Functional

@ electronic contribution of the Kohn-Sham free energy Fgs at
finite T

Frsl, Rl = D f0 < nl Tlgn > =D 0S(f,)

+ Enlol+ Eclo, fl+ / Vien (F)p(F)dF

with contributions of the kinetic energy,
entropy of non-interacting e,
Hartree term,

exchange-correlation energy and the

e 6 6 o6 o

ionic potential
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Electronic Convergence

the Free Energy Functional

Fislg. F.R] = D fo < oul Tlon > =D 0S(f)

) +  Enll + Ecclo, 1+ / Viea(P)p(P)d*7
R: ions' positions,

fn: levels’ occupancies,

¢ :1— e~ orbitals

electron density p = 3%, f,|¢n(F)[?
going beyond DFT,

Exc[o, f] = Eicc)c[l’] + E)ill[@a f]
~—— ~——

LDA,GGA XXC
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the Self-Consisteny Cycle

/ trial-charge pin and trial-wavevectors g, /

2 optimization loops

| set up Hamiltonian H (pin) |

@ inner (el): refinement of
wavefunctions:
optimization of {v,}

| iterative refinements of wavefunctions {yn} ‘

‘ new charge density pout = ¥ n fn|Wn(r)|? | @ outer (el): refinement of
pin charge density mixing

‘ refinement of density pin, Pout = NEW Pin |

@ outer (ionic) refinement

l of atoms' positions:
no @ minimisation of the
¥ forces

‘ calculate forces, update ions |
I
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Numerical Determination of the electronic groundstate

Iteration to Self-Consistency

self-consistent solution of HY = EV

@ old-fashioned:

Q start with a trial p9

@ solve the Schrodinger eqn.

@ calculate the new density pour = >.°° [1n]?

@ mix charge densities: ppew = npin + (1 — 1) pour
© construct the new Schrodinger eqn. using ppew
@ iterate 2-5 until convergence is reached

— slow

Doris Vogtenhuber
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Numerical Determination of the electronic groundstate

Direct Minimization of the Functional

@ modern, based on the method of Car-Parrinello:

@ used if the diagonalization of H is the bottleneck of the
calculation

@ minimize the value of the functional F,(7)

h2

gradient : Fo(F) = [~ V2 + V(7 o(r) — enldn

o start with a set of trial wavefunctions ¢2(7) with
n=1,...Ne(/2) (eg random numbers)

@ converge each band iteratively, starting from ¢, diagonalizing
the Hamiltonian

@ supported by VASP (versions up from vasp.4.6)
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Basic Algorithms used in VASP
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@ almost all algorithms used by VASP are based on iterative
matrix diagonalization schemes
@ blocked Davidson (DAV)
@ conjugate gradient (CG)
© residual minimization (RMM), direct inversion in the iterative
subspace (DIIS)

@ a small amount of a residual vector |R, > is added to the
function f to refine f (f = |p, >, p,....)

@ in iterative diagonalization methods, |R($,) > is used to
update the wavefunction: ¢/, = ¢, + AR, (in the sense of a
steepest descent approach)

@ minimize the norm of |R, >

Doris Vogtenhuber



Electronic Convergence Introduction H H
the SCF-scheme ) WE\e/re]l’Sltat
Basic Algorithms used in VASP

Basic Algorithms used in VASP

Residual Vectors: wavefunction (|¢, >)

@ start with some trial ¢, for an eigenstate n of H

@ variation of the Rayleigh quotient with respect to < ¢,| —
residual vector |R(¢,) >:

: < ¢n|H[dn > ‘ :

appr. __ : — R “"‘n S= H . zppns a >

e = ZEen= — |R(dn) >= (H— G S)lo

@ aim: find a matrix K which gives the exact error of the
wavefunction (preconditioning), to find the optimal |R, >

Doris Vogtenhuber
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Basic Algorithms used in VASP

Preconditioning (I)
@ aim: find a unitary matrix (“rotation matrix”) K that yields:
@ the exact error in the trial wavefunction (ideally in a single
step)
@ a preconditioned residual vector |p,) = K|R,)

@ based on the ansatz of Teter et.al:
as Eyj, dominates H for large G, — K = K(%Ek,-,,(R))
G. Kresse, J. Furthmiiller, Phys. Rev. B 54, 11169, (1996),

27 + 18x + 12x2 + 8x3
GG 27 1 18x + 12x2 + 8x3 + 16x4’
R G2
2m %Ekin(R)

) with

(GIK|G')
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Basic Algorithms used in VASP

Preconditioning (II)

e preconditioning using hybrid functionals (M. Marsman,
G. Kresse, to be published): the optimal K to optimize

FIK,Fl = DY £K: Ko < 61| Tlgw > =Y oS(f)

n ki n

b Eulp+ Bl 1+ [ Viouino()°7

with p(F) = 3=, > fa K3 Kk ] (F) i (7)
° (bln = Zm Knm¢m
@ linearization of Exc around the present set of orbitals:

@ matrix elements for a fixed, non-local Fock V. calculated at
the start of the self-consisteny procedure, not updated during
the search of the optimal K.

Doris Vogtenhuber




Electronic Convergence Introduction miversitét
wien

the SCF-scheme
Basic Algorithms used in VASP

Basic Algorithms used in VASP

Blocked Davidson Scheme (DAV)

@ select subset {(,bﬂk =1,..,m} of all bands {¢n|n =1, .., Nbands }

@ optimize ¢j by adding the orthogonalized preconditioned |R, > (|p» >) to
the presently considered subspace

© Rayleigh Ritz optimization in the space spanned by these vectors
(“sub-space” rotation in the 2 % n; dim. space)

@ determine n; lowest vectors {¢2|k = 1,...,m}

@ iterate 2-4 if required

@ store the optimized w.f. back in the set {¢x|k = 1,..m1, .., Nbands }-
@ continue steps 1-4 with next sub-block {¢}|k = ni +1,..,2m}

@ after each block of band has been optimized:
Rayleigh Ritz optimization in the space {¢«|k = 1, .., Nbands}

© approximately a factor of 1.5-2 slower than RMM-DIIS, but always stable.

Doris Vogtenhuber
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Basic Algorithms used in VASP

Blocked Davidson (DAV)

Q {¢”‘n = 17 29 Nbands} = {Qsﬂk = 1, oog) n1}
@ optimize this subset

Nbands

dc/gi= (1— > |¢n)(#nlS) K(H—cappS)k|k=1,.,m >
n=1

orthonormalization operator

© Rayleigh Ritz optimization — {¢2|k = 1, m}
@ add additional preconditioned residuals

Nbands

di/gk /g =(1— D |¢n>< ¢alS)K(H = €appS)dic >, |k =1,..,m
n=1

@ add a fourth set of preconditioned vectors if required,. . .

Doris Vogtenhuber
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Basic Algorithms used in VASP

Conjugate Gradient (CG)

@ strictly sequential: bands are optimized one after another

@ optimization of Fxs with respect to the wavefunctions yields a gradient
lgn >

lgn >= (1= 3 ém >< Sm)Hlén >+ 3 2 Han(fy — ) 6m >

m

1 2

with A = T + Vion + Vi(p) + Vic[, f]
@ V. includes the local Vi, (and the non-local screened Fock-exchange).

@ 1: changes in Fxs with respect of changes in the ¢ orthogonal to the
subspace spanned by the current ¢

@ 2: changes in Fxs with the subspace spanned by the current ¢ (=0 if only
occupied orbitals are included)

Doris Vogtenhuber
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Basic Algorithms used in VASP

Conjugate Gradient (CG)

@ search direction determined by using Loewdin's perturbation theory:
Hnm /
Uim = dpm — Asia ¢n = Z Unm¢m
Hmm - Hnn e
U. .. unitary matrix, chosen such that < ¢/ |H|¢), >= €m0nm
@ step direction ~ H,,,, — H,,
@ As step width along the search direction
@ implemented algorithms include:

o (preconditioned) steepest descent
o (preconditioned) conjugated gradient

Doris Vogtenhuber
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Basic Algorithms used in VASP

Residual Minimization - direct inversion in the iterative subspace
(RMM-DIIS)

@ most time consuming step in CG: orthonormalization of the
preconditioned residual vector to the current set of trial
wavefunctions (for each single band update)

@ avoided by minimizing the norm of the residual vector instead of the
Rayleigh Ritz quotient
P. Pulay, Chem. Phys. Lett.73,393 (1980), D.M. Wood, A. Zunger,
J. Phys A, 1343 (1985)).

@ each vector is optimized individually
o fast

@ drawback: always finds the vector which is closest to the initial trial
vector: — if the initial set does not span the real ground state,
some states may be “missing” in the final solution.

Doris Vogtenhuber
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Basic Algorithms used in VASP

Residual Minimization - direct inversion in the iterative subspace
(RMM-DIIS)

© calculate a preconditioned residual vector K|R% >= K|R(¢2)) >

@ perform a trial step with width A along this direction:
|68 >= 160, > +AK|RE, >

© — new residual vector R} >= |R(¢L)) >

@ search for the linear combination of |¢2, > and |¢}, >,
|pM >= Z,’-\io ailgi > (here: M = 1),
yielding |RM >= Z,{ZO iRl >
minimize ||R|| by determining the lowest eigenvector/eigenvalue of
Zjl\io <RLIRL,>aj=c¢ ino < ¢0|S|¢h, >

© start from 1, using [¢M > and |RM >

Doris Vogtenhuber
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Basic Algorithms used in VASP

Further Algorithms

@ based on CG: simultaneous update of all orbitals

@ MD-like Damped velocity friction algorithm (see lecture 3)
(requires the definition of a timestep)

@ exact diagonalization: whenever there is a substantial amount
(> 30-50% ) of unoccupied bands (eg for GW calculations )

@ subspace rotation and diagonalization in the sub-space
spanned by NBANDS

Doris Vogtenhuber
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Parameters to be set in INCAR

choice of the electronic convergence algorithms

@ ALGO algorithms to be used (alternative: TALGO):
implemented in vasp.4.6 and vasp.5
Normal (DAV) | Fast (DAV+RMM-DIIS) | VeryFast
(RMM-DIIS) |
implemented in vasp.5 only
| Damped (damped MD) | All (damped MD+precond. CG)
| Exact | Diag | Subrot | Eigenval | None | Nothing |

e for Hybrid functionals, always use direct optimization (A,
Exact)

@ LDIAG (True | False): perform subspace diagonalization

@ TIME time step for damped MD-based algorithms

Doris Vogtenhuber



Charge Density Mixing

Outline

© Charge Density Mixing

Doris Vogtenhuber



Charge Density Mixing

Charge Density Mixing

DIIS Mixing Algorithms

@ calculation of the input density for the next el. step from
Pnew = MPjn + (m - 1)Pout:

@ minimize the norm of the residual vector
R[pin] = Pout [pin] — Pin

@ assume R can be linearized around pg.:

Rlpl = —p—puc)
Rlel ~ RIpI™ =3 (o) — pyo)
p(m+1) = p(m) S G(m)(Pth) - pg;n))

Gm _— _jm)-1

Doris Vogtenhuber
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Charge Density Mixing

DIIS Mixing

e J=1— xU: “charge dielectric” (Jacobian) matrix:

@ in a system with a dielectric susceptibility x, an external

charge perturbation (Ap) leads to a change in the potential
U = 4re’
q®

@ model dielectric function implemented in VASP:

G.P. Kerker, Phys.Rev.B23, 3082 (1981):
T
g2 + BMIX’
BMIX ... q — cutoff wavevector for the Kerker approx.

J &~ AMIX- max( AMIN)

Doris Vogtenhuber
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Charge Density Mixing

DIIS Mixing

@ the convergence behaviour is determined by the width of the

a 2
eigenvalue spectrum of J =1 — X“Z—f

@ insulators, semiconductors: constant, indepedent of the
system size L = good convergence
@ metals:
e short wavelength limit (large q) — J =~ 1: no screening
e long wavelength limit: the screening term dominates J:
— Jx=q 2~ 12
= the width of the spectrum is proportional to the square of
the longest dimension of the lattice
= poor convergence, possibly charge sloshing.

Doris Vogtenhuber
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Charge Density Mixing

Available Mixing Algorithms

@ Linear Mixing (n = AMIX )

A = np{™ 4 (n— 1)l

o Kerker Mixing (BMIX)
2

Pmix(G) = p,-n(G)—f—AMIX-maX(ma

AMIN)[pout(G) — pin(G)]
@ Broyden Mixing, (WC = 0)
D.D.Johnson, Phys.Rev.B38, 12807 (1988)
information of the current iteration (m) updates J=! but also
overrides information of from previous iterations

e Pulay Mixing (WC > 0)
P.Pulay,Chem.Phys.Lett73, 393 (1980)
information from all previous iterations is included with equal

weights.

Doris Vogtenhuber
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Charge Density Mixing

Available Mixing Algorithms

o Tchebycheff mixing via a 2"4 order equation of motion, using

a simple velocity Verlet algorithm
H.Akai and P.H.Dederichs, J.Phys.C 18, 2455 (1985)

Pmix(G) = 2-I(G)[pout(G) — pin(G)] — 11pin(G)
u = friction (damping) factor

Doris Vogtenhuber
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Charge Density Mixing

Parameters to be set in INCAR

@ IMIX: Mixing type:
0 (no mixing) | 1 (Kerker) | 2 (Tchebycheff) |
4 Broyden (WC=0) or Pulay (WC>0)

@ Kerker mixing BMIX, BMIX_MAG: cutoff wavevectors
o for Boyden-type mixing: INIMIX, MIXPE, MAXMIX, WC

INIMIX functional form of the initial mixing matrix
MIXPRE metric for the Broyden scheme

MAXMIX max. # of steps stored in the Broyden scheme
WC weight factor for each iteration

Doris Vogtenhuber
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what to do if convergence fails (DFT-level)

failsto converge
ICHARG=12 (no charge upd

failsto converge

@ALGO:N)

converges

converges
‘ use this setting %

converges

play with mixing parameters

ICHARG=2
AMIX=0.1; BMIX=0.0

failsto converge

converges

increase BMIX
MIX=3.0; AMIN=0

failsto converge

bug report
after positions have been check

Doris Vogtenhuber
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© Sampling the Brillouin Zone
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Some Basics

@ perfect periodic lattices: translational symmetry: each unit
cell is repeated at R by shifting it by N - 3
(3 = nya1 + maz + n3a3 lattice vector)
with respect to some “origin of the lattice”:

@ applying a translation operator 7'5,.: 9['5/(5) =R

o T and H commute ([T,H]=0)
= T and H have the same eigenfunctions.

T210) = IR)=x-0)
<R>|§> - m.<6|6>
=\ = 1

—~ )\ = ek keR
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Some Basics (continued)

periodicity (continued)

@ translation by a lattice vector R

A — — EK, =
T210) = |R) = &% o)
@ = for any W that satisfies the Schrodinger equation in a
periodic potential, Ik such, that a translation by R is

equivalent to a multiplication by the phase factor e’ k- R,
eg. for e”-waves

Doris Vogtenhuber
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periodicity: Range of k

e for any lattice vector of the reciprocal lattice defined by unit
vectors (b = aJ X ak)
G = m1b1 ol m2b2 = IT)3bg;7

o let k’:k+G,,,

@ range of allowed values for k: within the first Brillouin zone
(BZ)
0<k§2—7ror fz<k§E
a a a
@ for finite crystals: # k % 00
— 7 allowed number of k — quantization of k

Doris Vogtenhuber
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Some Basics (continued)

Quantisation of k

@ cyclic Born-von Karman boundary conditions (/ = Nja;)

= wniversitat
wien

@ unperturbed (ideal) crystal (eg 1D chain with length /),
@ Ni: number of unit cells of the macroscopic crystal along x
o

Nji: large enough to provide that effects of the crystal shape
are negligible.

V(X + M) = V(X), V(X + Ny 3) = V()
U(x + Npap) = elihay(x) = eliMa —
2
kiNia; = 2mm = ki = ﬂ-ml, m eZ
Nlal
Nl 1
0<m < MN; or —?<m1§7

Doris Vogtenhuber
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Some Basics (continued)

ikr

@ proper wavefunctions in a periodic lattice: V(7)) = e -u(r)
BlochFactor

—

where u(F) is a cell-periodic function of the lattice

-

@ the eigenvalues ¢,(k) of a crystal of fixed, finite volume V: discrete
spectrum of H:

@ Vn: the set of electronic levels ,(k) is the “n®" energy band’ .

@ the eigenstates and -values are periodic with K in the reciprocal
lattice (“extended zone sheme”)

Doris Vogtenhuber
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Some Basics (continued)

Supercells

@ example: bandstructure of
(super)cells containing 1 (2)

R R atoms with 2 s-electrons

000 000 e 3 =923 E{Z%[{’l

o folding of the bandstructure

s-like bands for a primitive cell and a supercell with 2 atoms

E s
W 'Y YoYo! cell size  1la 2a
# bands 1 2

15 E 4
*0ee® oo, k-pts rr
L L L L L A X
zf 0.02 0.04 A 0.08 0.1 X

Tkl X T

@ = for constant E—grid—density:
N(R') = LN(K)

Doris Vogtenhuber
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Sampling of the Brillouin Zone

Integrals over the Brillouin zone Igz:

o for the calculation of e.g. Density of states (DOS), Charge
densities, ....

@ Integrals over the Brillouin zone are usually replaced by sums
over special k-points:

°

I(e) = QLBZ | / F0(eyz = )k — 3wy F(olenz =)

e Symmetry of the lattice: BZ — irreducible BZ (IBZ)

Qpyz

Ng

Qipz =

@ Nz: number of symmetry operations of the point group

Doris Vogtenhuber
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Sampling of the Brillouin Zone

k-mesh generation

@ the BZ should be covered by equally-spaced /?—point grids,

e.g. Monkhorst-Pack meshes
H.J. Monkhorst, J.D. Pack, PRB 13, 5188, (1976)

> _rMm+s1 zm+S 7 n3+s3
k = b b
1 m + Do N + D3 N

e b unit vector of the BZ

@ s; optional shift along direction /

@ N; number of subdivisions along i

Doris Vogtenhuber
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example of a MP-mesh of a 2D square lattice

;
2 o full BZ: Ny = Np =4 =
Y2 Ky np(BZ)=16
e oo @ I|22 o Ny =4= n(IBZ) =4
i 3 - w- = 4 _ 1
CoF el O o i, = w5 (187) = s =
SEP o v = 51
IBZ ° otz | F(F K)dk —s
° ° ° o [ BZ 1 1 1 .
4F(k1)+4F(k2)+2F(k3)

Doris Vogtenhuber
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example: bandstructure energy

e.g: one s-like band
o F(k) = e(k)
o £ =) wye,
K

[: no nodes in W = e=min

°
K @ X: max # of nodes in ¥ = e=max
@ to increase the accuracy:
°

increase the density of the k-mesh

Doris Vogtenhuber
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Smearing Methods

problem in metallic systems: some bands cross the Fermi level
EF=p
= discontinuity of the occupancy f of bands at Ef = p

band n crossing Ef

@ eg: bandstructure energy

E» =Y wge(ki,n)f(e(ki, n) — 1)

n,kj

k @ ocupancy of state (k;, n)

fekom = = { g " E

Doris Vogtenhuber
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Smearing Methods

Fermi-Dirac smearing

€y — M
f<(7k>

@ ) exp (6("’;)_H) +1

g

@ 0 = kg T ...smearing parameter (= electronic T of the

system)
@ energy E is no longer variational with respect to the partial
occupacies f
@ the new variational functional is the Free energy F
F=E—-> 0S5(f)
n
@ S: entropy of a system of non-interacting electrons at a finite
temperature T
o S(f)=—[fInf+(1—F)In(1—f)]

Doris Vogtenhuber
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Smearing Methods

Gaussian Smearing

@ levels are broadened with a Gaussian function

@ f is the integral of the Gaussian function:

‘nk M

o F(35) = menl )L prog[ioar ()]

analytical inversion of the error-function erf does not exist

= S and F cannot be written in terms of f,

5(6;#) = feXp (=)

o has no physical interpretation.

variational functional F(o) differs from E(0).

Forces: F(F (o)) are not necessarily equal to F(E(0)).

workaround: extrapolation to ¢ — O:

Doris Vogtenhuber
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Smearing Methods

ssel-Paxton smearin

@ generalization of Gaussian
broadening with functions of
higher order

@ expansion of stepfunction in a
complete set of orthogonal
functions:

a(g)Sple-Ef)

@ Hermite polynomials of order N

EF

@ term of N = 0: integral over
Gaussians

Doris Vogtenhuber
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Smearing Methods

Methfessel-Paxton smearing

MP smearing

@ Hermite-polynomial of order N
fo(x) = 3 (1 — erf(x))
fu(x) =

N
() + 3 AnHam—1(x)e ™
m=1
SN(X) = %ANH2N(X)€7X2
+ + ' @ deviation of F(c) from E(0) only
1 = Sn(x) ] of order 24N in &
K_‘ @ extrapolation for o — 0 usually
10— . not necessary, but possible:

® E(0)~ E(c) =
wiz (N +1)F(0) + E(0))

o

Doris Vogtenhuber
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Smearing Methods

wiversitat
wien

Methfessel-Paxton Smearing

@ MP of order N leads to a negligible error, if F(e) is
representable as a polynomial of degree 2N around ep.

@ linewidth o can be increased for higher order N to obtain the
same accuracy

@ "entropy term”: S =0 ) Sn(f,) describes deviation of F (o)
from E(o).
= if S < few meV: E(0) = F(o) ~ E(0)

Q

E(0).

= forces correct within that limit.

@ in practice: smearings of order N=1 or 2 are sufficient

Doris Vogtenhuber



Basics . Wy e
BZ Sampling ;va\){\e/re]rSIta’[
Sampling the Brillouin Zone Files and Parameters, Problem Handlir

Tetrahedron Intrgration

;
¥ % o (I)BZ is subdivided into tetrahedra
LN spanned by the k-points
2 N ¢ o function X to be integrated: linearly
1 2

interpolated between the tetrahedra
— X

@ tetrahedra are remapped onto the

8
8
& k-points, k-points have effective
6 A weights (& occupancies)
3

4 o= g J d/?cj(/}')f(en(/}’))
4 Qpz
> o X=Y1,GkX(k) «— [X

Doris Vogtenhuber
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Tetrahedron Intrgration

Possible Drawbacks of the Linear T.M.

o > 4E—pts necessary, ' must be included

@ tetrahedra can break the symmetry of the
Bravais lattice

@ linear interpolation of f may under- or
overestimate the real curve

@ the errors due to this linear interpolation
only cancel for full bands (problem for
metals)

K—

@ the afforded density of the k-mesh (# of
tetrahedra) can be large
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T.M., Blochl Corrections

improvements, drawbacks

P.Bléchl et.al., PRB49, 16223 (1994)
o for metals: correction of quadratic errors is possible

4
5W1:n = ; %DT(EF) Z(Cjn — 6,-(‘")

Jj=1

(T ... tetrahedra, D... DOS of T at E = Ef)

o best k -point convergence for energy

e drawbacks (if used for metals):
® Wy;: not variational with the cange of ionic positions
e = the new effective partial occupancies do not minimize the

groundstate total energy
o = variation of occupancies w,; w.r.t. the ionic positions

would be necessary
e with US-PP and PAW practically impossible
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k-point generation

choice of /?—points as implemented in VASP

used files: KPOINTS, INCAR
generate equally spaced k- mesh

shift it by s; (if shift is defined in KPOINTS)
apply the symmetry operations of the symmetry group of the
lattice if ISYM > 0: this includes the symmetries of the

e Bravais lattice (POSCAR) ,
atomic positions (POSCAR) ,
pre-set MD-velocities (POSCAR) ,
magnetic ordering (INCAR)

e extract the k points lying in the IBZ (—s IBZKPT)
o calculate the proper weights w;.
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Input files: KPOINTS

specifies the k mesh to be used

general format for scf runs, DOS

Automatic mesh @ header (comment)

0

¢ o) @ N = 0: automatic generation scheme
44 4 © I (M)-centered MP grid

0. 0. 0. @ +# of subdivisions N; along b;

© optional shift of the mesh (s;)
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Input files: KPOINTS

high symm. lines for bandstructure plots (DFT only)
10 eg for a simple cubic structure
Line-mode
rec @ header (comment)
000 @ intersections along each given
0.5 0.0 0 symmetry line in the BZ
r-X

0.5 0.00 =
0.5 0.5 0.0 o)

Q@ M-R
0.50.50.0 this format must not be used for hybrid
0.5 0.5 0.5 .

functional band structures
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Input files: INCAR

BZ-integration related Input Parameters

@ ISMEAR=: BZ integration method :
-1 (Fermi) | 0 (Gaussian) | 1,2 MP | -5 (Blochl)
for relaxation of metals use 1 or 2
@ SIGMA: smearing width o:
S-contribution to F should not exceed a few meV/atom
small-gap semiconductors!: o < %Egap

@ ISYM: use of symmetrisation (E—mesh spans the BZ or the
IBZ)
-1] 0 (no symm) | 1,2 (symmetry used)
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Setup of a proper k-mesh

@ always check for proper k-mesh convergence before the
production runs

@ supercells: rescale the K-mesh (preserve the density of the
mesh)

@ slabs (long axis L to the surface, eg z) : Ny x Npx1
@ free atoms, molecules 1x1x1 (I-point only)

o k meshes for tetrahedra BZ-integration have to include I' and
the k- points at the BZ-edges

@ the KPOINTS - file format for DFT band-structure plots must
not be used for calculations using hybrid functionals.
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