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The Many-Body Schrodinger equation

A

HY(ry,...,ry) = E¥Y(ry,...,rN)
(ZA +ZV r; —|—; |I'Z —I‘J|) I'1,...,I‘N) = E\If(rl,...,rN)

For instance, many-body WF storage demands are prohibitive:
U(ry,...,rN) (#grid points)N

5 electrons on a 10x10x%10 grid ~ 10 PetaBytes !

A solution: map onto “one-electron” theory:

U(ry,...,rn) = {1(r), a(r), ..., vn(r)}




Hohenberg-Kohn-Sham DFT

Map onto “one-electron” theory:

U(ry,....,rn) = {Y1(r), Ya(r), ..., ¥n(r)}  ¥(ry,..,ry) = H%‘(I‘z’)

Total energy is a functional of the density:

Elp] = Ts[{wilpl}] + Eulp] + Exclp] + Ezlp] + U[Z]
The density is computed using the one-electron orbitals:
N
p(r) = 3 lun(r)
The one-electron orbitals are the solutions of the Kohn-Sham equation:

(—5 2+ Valr) + Virlol(r) + Vi o](r) ) a(r) = estn(r)

Evclp] =777 Vielpl(r) =777




Exchange-Correlation

Flp] =777 Vielpl(r) =777

Exchange-Correlation functionals are modeled on the uniform-electron-gas (UEG):
The correlation energy (and potential) has been calculated by means of Monte-
Carlo methods for a wide range of densities, and has been parametrized to yield a
density functional.

LDA: we simply pretend that an inhomogeneous electronic density locally behaves
like a homogeneous electron gas.

Many, many, many different functionals available:
LDA, GGA, meta-GGA, van-der-Waals functionals, etc etc



An N-electron system: N = O(102%3)

Hohenberg-Kohn-Sham DFT takes us a long way:

\Ij(rla "'7rN) — {¢1<r)7 ¢2(I‘), "'7¢N(r)}

(#grid points)N N x (#grid points)

Nice for atoms and molecules, but in a realistic piece of solid state material N= O(1023)!




Translational invariance:
Periodic Boundary Conditions

Translational invariance implies: = 3 i

wnk(r -+ R) — wnk(r)eikR

and

Pnk(r) = Upi(r)e™"

Unk(r + R) = i (r)

e 22

All states are labeled by Bloch vector k and the band index n:

* The Bloch vector k is usually constrained to lie within the first Brillouin zone
of the reciprocal space lattice.

 The band index n is of the order if the number of electrons per unit cell.




Reciprocal space & the first Brillouin zone

() —aj-as X asg




Sampling the 15t BZ

The evaluation of many key quantities involves an integral over the 1% BZ.
For instance the charge density:

We exploit the fact that the orbitals at Bloch vectors k that are close together are

almost identical and approximate the integral over the 15t BZ by a weighted sum
over a discrete set of k-points:

p(r) = Z wkfnk|¢nk(r)’2dka
nk

Fazit: the intractable task of determining ¥ (rq,...,ry) with N=1023, has been
reduced to calculating ¥,k (r) at a discrete set of k-points in the 15t BZ, for a
number of bands that is of the order if the number of electrons in the unit cell.




The total energy

Elp, AR, Z}] = Ti[{Ynk|p}] + Enlp, {R, Z}] + Exclp] + U{R, Z})
The kinetic energy

[{wnk Zwkfnk wnk’ - _A‘wnk>

The Hartree energy

EH p) {R Z} // peZ IOGZ /dr

r — 1’|
where

pez(r ) + Z Zi(r — p(r) =Y wicfr|thni(r)[*dk
nk

The Kohn-Sham equations
(=52 + Virlpez) 1) + Vi o)1) racx) = nsthc(r

The Hartree potential

per(r')
v

Vit |pez](r) =




A plane wave basis set

ikr

Yk (r) = upk(r)e Unk(r + R) = (1)

All cell-periodic functions are expanded in plane waves (Fourier analysis):

1 1Gr 1 i r
unk(r) — 01/2 Z CGnke < ¢nk(r) — Z CGnke (G+k)
G G

01/2
plr) =) pae'®” Vir)=) Vae'™
G G
The basis set includes all plane waves for which

1
§|G + k|2 < Ecutoff

Transformation by means of FFT between “real” space and “reciprocal” space:

NFFT

r

‘Gr FFT 1 _ic
Crnk = E Canke'™" —— Cgnk = g Crnke "
G
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The charge density




The Self-Consistency-Cycle (cont.)

Two sub-problems:

Optimization of {v,,}
Iterative Diagonalization
e.g. RMM-DIIS or
Blocked Davidson

Construction of pin
Density Mixing
e.g. Broyden mixer

/ trial-charge pin and trial-wavevectors 1,

/

>

=

Y

set up Hamiltonian H(p;,)

Y

iterative refinements of wavefunctions {v, }

'

new charge density pout = Y. fn|tn(r)|?

Y

refinement of density pin, pout = NEW pin

n0®

calculate forces, update ions




The self-Consistency-Cycle

A naive algorithm: express the Hamilton matrix in a plane wave basis and
diagonalize it:

H = (G|H[p]|G') — diagonalize H — {45, ¢;} i = 1,.., Nppr
Self-consistency-cycle:

pPo — H() — p/ — P11 = f(po,p/) — H; — ...

lterate until: p=p’
BUT: we do not need N¢;; eigenvectors of the Hamiltonian (at a cost of O(Ng3)).

Actually we only the N, lowest eigenstates of H, where N, is of the order
of the number of electrons per unit cell (N, << N¢¢).

Solution: use iterative matrix diagonalization techniques to find the N, lowest
Eigenvector of the Hamiltonian: RMM-DIIS, blocked-Davidson, etc.




Key ingredients: Subspace diagonalization
and the Residual

* Rayleigh-Ritz: diagonalization of the N, x N, subspace

Z ﬁntmk — Z Ezppgntmkz
with m m

Hnm — <¢n|ﬁ‘¢m> Snm — <¢n|g’¢m>

app*

yields N, eigenvectors |i;) = Z Bk |¥m) With eigenvalues €

These eigenstates are the best approximation to the exact N, lowest
eigenstates of H within the subspace spanned by the current orbitals.

e The Residual:

(W H|bn)

R(n)) = [:I—eappg n €app = _
[R(¢n)) = ( )[¥n) TETE

(its norm is measure for the error in the eigenvector)




Blocked-Davidson

* Take asubsetofall bands: {¢y,|n=1,...N} = {¢;lk=1,..,n1}

* Extend this subset by adding the (preconditioned) residual vectors
to the presently considered subspace:

{wli/gli — K(H - Eapps)wé‘k =1, "7n1}

Rayleigh-Ritz optimization (“sub-space rotation”) in the 2n, dimensional
subspace to determine the n; lowest eigenvectors:

diag{vy/gr} ——> {gilk=1,.,n1}

Extend subspace with the residuals of {¥7}
{r/9x/ 9k = KH — eappS)Yi|k = 1,..,n1}
Rayleigh-Ritz optimization = {¥ilk=1,..,n1}

Etc ...
The optimized set replaces the original subset:

{¢?|k — 17 '-7n1} —_—> {¢n|n — 1, ..7’)11}
 Continue with next subset: {¢i|k =n; +1,..,n2}, et, ...

After treating all bands: Rayleigh-Ritz optimization of {¥n|n=1,..,N}




The action of the Hamiltonian

The action H|t,x)

(<544 V®) vurt)

Using the convention
1

e GHIT 4 (G 4+ k|thni) = Cank

* Kinetic energy: | |
(G + k| — §A\¢nk> = 5](} + k|*Cank NnpLw

* Local potential: V = Vi[p] + Vacl[p] + Vext
Exchange-correlation: easily obtained in real space Vicr = Vic|pr]
FFT to reciprocal space {Vicr} — {Vic.c} A
Hartree potential: solve Poisson eq. in reciprocal space Vu,g = ‘GPPG
Add all contributions Vg = Vii.g + Vixc.c + Vext.c
FFT to real space {Va} — {Vi}
The action

1

G+ k|\V|Ynk) =
(G + KV i) = 57—

Z VeCrnie 'G* Nrrt log Nprr

r




Solving the KS equations

(~ 52+ Ve (0) + Vi) + Ve (1)) () = et (1)

FFTs extensively used to evaluate H|,,)

We actually use a mixed basis set (Projector—Augmented-Waves):

which involves projection of the pseudo—wave functions on local projection
operators (DGEMM).

One needs to keep the solutions (bands) at each k-point orthonormal:

essentially done by a Choleski decomposition (LU) of the overlap matrix, followed by
an inversion of U (LAPACK/scaLAPACK) and a transformation between the wave
function (ZGEMM).

Diagonalization of the Hamiltonian in the subspace of the current wave functions
(LAPACK/scalLAPACK or ELPA), followed by a unitary transformation between the
wave function (ZGEMM).




A typical workload

e Action: Hli,)

FFT(¢,) NInN V n

V(r)ga(r) N von

(real sp.) BLAS3 (DGEMM)
LREAL=A

e Subspace rotation:

Hpm = (Up|H|Ym) V¥ n,m BLAS3 (ZGEMM)

diag(H) (sca)LAPACK

Pn) =D Unmltm) V¥ n BLAS3 (ZGEMM)




Scaling with system size (N)
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Self-Consistency Cycle (SCC): RMM-DIIS
running on 8 Intel X5550 quadcore procs. (total: 32 x 2.66 GHz cores)




Distribution of work and data

2 MPIl-ranks, NCORE=1

Distribute work and data “over-orbitals”

* Default

! 2 « NCORE=1

(or equivalently: NPAR = #-of-MPI-ranks)
KPAR=1

#1 #2

The Kohn-Sham equation:

(~5 A+ Vesa (1) Var(0) + Vi) (1) = enactiar)

e Orbital index n




Distribution of work and data

2 MPIl-ranks, NCORE=1

Distribute work and data “over-orbitals”

#1 #2
e Default

! 2 e NCORE=1

(or equivalently: NPAR = #-of-MPI-ranks)

 KPAR=1

2 MPI-ranks, NCORE=2

)

Distribution work and data “over-plane-waves’
* NCORE = #-of-MPI-ranks

(or equivalently: NPAR = 1)
 KPAR=1

#1 #2




Distribution of work and data

2 MPIl-ranks, NCORE=1 4 MPIl-ranks, NCORE=2

#1 #2 #2 #3

1 2

2 MPI-ranks, NCORE=2

#1 4o Combinations of “over-orbitals” and
“over-plane-wave” distributions are
allowed as well




Distribution of work and data

Additionally work may be distributed “over-k-points”

« KPAR=n (n>1)

 m = (#-of-MPIl-ranks / n) must be an integer
Work is distributed in a round-robin fashion over groups of m MPI-ranks
Data is duplicated!

(—%A + Vext (I') + Vu (I‘) - ch(r))¢nk(r) — 6nkwnk(r)

Orbital index n, k-point index k

8 MPI-ranks, KPAR=2, NCORE=2

k-point 1 K-point 2

#2 #3 #6 #7




All-2-All communication

2 MPI-ranks, NCORE=1 W >orH W > 4 MPI-ranks, NCORE=2
n n

/\ #2 #3

serial FFT {W_,} MPI communication parallel FFT (¥}

c:nm= <mek| H ILIJnk>

Each MPI-rank contracts over its subset of G-vector
followed by a global sum of C__ over all MPI-ranks




Parallel FFT: Ball-2-Cube

2G| |

(B)

In-house parallel Ball-2-Cube FFT:

e Less 1D-FFTs (reduction: = 1.76 X)

e BUT: communication from (B) - (C) and (C) = (D)

* For small to medium sized FFT grids a highly optimized 3D-FFT
(e.g. from Intel’s mkl) is equally fast




Hardware

Node 1

Package 1

considerations

Core 1

Package 2

Core 2

Core M+1

Typical configuration:

e N interconnected nodes
* 2 packages/node

UL

* M cores/package

Distribution “over-plane-waves”:
MPI-ranks that share an orbital
should reside on the same node

(better even on the same package).

* NCORE=n<2M
* (2M / n) should be an integer
Typically: n=M orn=M/2

A

Interconnect

Node N

Package 1

Core 1

Package 2

Core 2

Core M+1

XL

A

Distribution “over-k-points”:
KPAR = n < #-of-k-points (NKPTS)
(#-of-MPI-ranks / n) should be an integer
If memory allows: KPAR = NKPTS

Default placement of MPI-ranks on the
nodes/packages/cores depends on the
particulars of the MPl implementation and
its configuration!




Node 1 Node 2

Package 1 Package 2 Package 1 Package 2

Core 1 Core 5 Core 1

Core 2 Core 6 Core 2

Core 3 Core 3.

Core 4 Core 4

Ukl Uk 1l

A A

Interconnect

For instance: Default placement of MPI-ranks on the

2 interconnected nodes nodes/packages/cores depends on the
2 packages/node particulars of the MPIl implementation and

4 cores/package its configuration!



Node 1 Node 2

Package 1 Package 2 Package 1 Package 2

MPI rank 1 MPI rank 5 MPI rank 9 MPI rank 13

MPI rank 2 MPI rank 6 MPI rank 10 MPI rank 14

MPI rank 3 MPI rank 7 MPI rank 11 MPI rank 15

MPI rank 4 MPI rank 8 MPI rank 12 MPI rank 16

X1l X1l

A A

Interconnect

For instance: Good: Place subsequent MPI-ranks close

 2interconnected nodes together, i.e., first on subsequent cores of

* 2 packages/node the same package, then moving on the

* 4 cores/package second package of the same node, before
starting to fill the next node.




Node 1

Node 2

Package 1

Package 2

Package 1

Package 2

MPI rank 1

MPI rank 2

MPI rank 3

MPI rank 4

MPI rank 5

MPI rank 6

MPI rank 7

MPI rank 8

MPI rank 9

MPI rank 10

MPI rank 11

MPI rank 12

MPI rank 13

MPI rank 14

MPI rank 15

MPI rank 16

s

J

25

J

A

A

For instance:
 2interconnected nodes
* 2 packages/node

* 4 cores/package

Interconnect

Bad: Distribute subsequent MPI-ranks in a
round-robin fashion over the packages.




Node 1

Node 2

Package 1

Package 2

Package 1

Package 2

MPI rank 1

MPI rank 9

MPI rank 2

MPI rank 10

MPI rank 3

MPI rank 11

MPI rank 4

MPI rank 12

MPI rank 5

MPI rank 13

MPI rank 6

MPI rank 14

MPI rank 7

MPI rank 15

MPI rank 8

MPI rank 16

X

J

X

J

A

A

For instance:
 2interconnected nodes
* 2 packages/node

* 4 cores/package

Interconnect

Worse: Distribute subsequent MPI-ranks in a
round-robin fashion over the nodes.




NCORE, KPAR, and the #-of-MPI-ranks

N interconnected nodes Distribution “over-orbitals”:

2 packages/node * The number of orbitals (NBANDS) is such
M cores/package that NBANDS / (2NM / NCORE / KPAR)
2NM MPI-ranks is an integer number

Increasing #-of-MPI-ranks may lead to an
unnecessarily large NBANDS (i.e., adding
“empty” orbitals)

Distribution “over-plane-waves”:
MPI-ranks that share an orbital
should reside on the same node

(better even on the same package). Some algorithms converge faster when

each MPI rank owns (part of) a few

* NCORE=n=<2M orbitals (e.g. blocked-Davidson)

* (2M / n) should be an integer

Typically: n =M or n=M/2 Generally speaking: having lots of MP!

ranks and very little work/data per rank
is never a good idea since (all-2-all)
communication becomes unreasonably
expensive.

Distribution “over-k-points”:

* KPAR = n < #-of-k-points (NKPTS)

e (#-of-MPI-ranks / n) should be an integer
If memory allows: KPAR = NKPTS




Strong/Weak scaling (Siy)

--- nominal speedup

c-© 1024 atoms
-0 2048 atoms
c©4096 atoms

|
64 128
nprocs




Scaling under MPI (on a Cray XC-40)
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Scaling under MPI (on a Cray XC-40)
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Large systems

* Use real-space PAW projectors (instead of reciprocal space projectors)

~ 7 3

const. N? (real sp.)  BLAS3 (DGEMM)
LREAL= A

* If you can limit k-point sampling to the Gamma (I' = k = 0) point:
use the “gamma-only” version of VASP

In the “gamma-only” version of VASP the orbitals are stored as real quantities
in real-space:

* real-2-complex FFTs

e DGEMMs instead of ZGEMMs




Compilation

Fast FFTs: the FFTs from Intel’s mkl-library seem to be unbeatably fast ...

scaLAPACK for large systems
A compiler that effectively generates AVX2 instructions and libraries (e.g. BLAS)

that are optimized for AVX2 (up to 20% performance gain)




The End

Thank you!




