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@ PBCs, k-points, plane waves, DFT
@ Projector Augmented Wave method
© Hybrid functionals

O New density functionals

© Reaching the electronic groundstate

© Hartree-Fock in PAW
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A system ofN electrons

B (rymsrn) = E(raisen)
0 1
1X X X
@ = i+ V(ri)+ - -
2 . 1y
i i i6]

A (ryunrn) = E(ropmse)
Many-body WF storage requirements are prohibitive
(#grid points) ™
Map onto \one-electron" theory
(royunren) P a(r); 20 N()g

such asHohenberg-Kohn-Sham density functional theory
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Do not need ( ri;::;rn), just the density (r):
E[1=TsIf il 1]+ Enl[ ]+ Exl[ I+ Ez[ ]+ U[Z]

> W 2z
(riunrn) = (i) (= jiMi® Eull= % j(rr)i(rr;)dfdfo

One-electron Kohn-Sham equations

% Ve LI+ Ve 1) )= ()
Hartree Exchange-Correlation
wWiln= “?Ojdro Eel12277 Vil J(r) =277

Per de nition: Exc = E Ts En Eex
In practice Exchange-Correlation functionals are modelled on the uniform

electron gas (Monte Carlo calculations): e.g., local density approxinah
(LDA).
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@ Translational invariance implies the existence of a good quantum
number, usually called the Bloch wave vectar All electronic
states can be indexed by this quantum number

ki
@ In a one-electron theory, one can introduce a second index,
corresponding to the one-electron bamd

j nki
@ The Bloch theorem states that the one-electron wavefunctions obey
the equation:

nk(r + R) = nk(r)eikR

whereR is any translational vector leaving the Hamiltonian
invariant.

@ k is usually constrained to lie within the rst Brillouin zone in
reciprocal space.
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@ The evaluation of many key quantities, e.g. charge density,
density-of-states, and total energy) requires integration over the
rst BZ. The charge density (r), for instance, is given by

1 X Z
(N=— fok ni(r)j*dk
BZ

BZ

o fnx are the occupation numbers, i.e., the number of electrons that
occupy statenk.

@ Exploiting the fact that the wave functions at-points that are
close together will be almost identical, one may approximate the
integration overk by a weighted sum over a discrete set of points

X X _ ;
(r)= Wi fnkj nk(r)jcdk;
n k

where the weightsv, sum up to one.
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The intractable task of determining( rq;:::;ry) (for N 10%°) has
been reduced to calculatingnk (r) at a discrete set of point§kg in the
rst BZ, for a number of bands that is of the order of the nhumber of
electronsper unit cell
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Monkhorst-Pack meshes

Idea: equally spaced mesh in Brillouin-zone.

Construction-rule:

kprs = Upbl + Ur b2 + qu3

up = 2r Qr

r — 1 2 ..... q

b; reciprocal lattice-vectors

¢ determines number of
k-points in r-direction
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@ quadratic 2-dimensional lattice 1 kl
@ 1= =4) 16 k-points e o | e @«'2 k2
A 3
_— . o o ,@‘6 b
@ only 3 inequivalent k- pomts { 1BZ) (0]% ™
o 4 k1 = ( g g ! 1= % ¢ ¢ ¢ ¢ IBZ
o 4 k = ( a *) ) ! 2= 7 ° ° ° o [
o8 k=D 15=1 Bz

L REM)dk) 1F(ki)+ F(ke)+ 3F (ko)

BZ
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Algorithm

Algorithm:

)

calculate equally spaced-mesh

shift the mesh if desired

apply all symmetry operations of Bravais lattice to all k-points
extract the irreducible k-points ( IBZ)

calculate the proper weighting

Common meshesTwo choices for the center of the mesh

centered on () belongs to mesh).

centered around . (can break symmetry !)

Marsman



Example - hexagonal cell

before after shifted to G
| symmetrization

@ in certain cell geometries (e.g. hexagonal cells) even meshes break
the symmetry

@ symmetrization results in non equally distributed k-points

@ Gamma point centered mesh preserves symmetry
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The total energy
E[; fR;Zg]= Ts[f nk[]o]+ En[; fR;Zg]+ Exc[ ]+ U(fR;ZQ)

The kinetic energy

X X A
Ts[f nk[ ]g]= Wi frih nk]) E ] nkl
n k
The Hartree ener
” 177 2 e
. . P ez ez 0,
Enl; fRP,Zg]- 5 TG dr-dr
where ez (r)= (N+ ,Zi (r Ri)
The electronic charge den)s(ityx
(r) = WicFnkj nk (r)j?dk;
n k
The Kohn-Sham equations

2 Ll Vel 10 a0 = ai ni(0)

The Hartree potential

ez (ro) 0
jr rOjdr

Vu[ ez](r) =
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@ Introduce the cell periodic pami,k of the wavefunctions

nk () = uni(r)e"
with unk (r + R) = un(r).

@ All cell periodic functions are now written as a sum of plane waves

1 X ) 1 X )
Unk(r): 1=2 CGnkeIGr nk(r)z 1=2 CGnkel(GJrk)r
G G
X , X 4
M= o€ Vi= o Vee®
G G

@ In practice only those plane wavgs + kj are included for which

1. .
QJG + Kj? < E cuo
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FFT

real space reciprocal space
G
cut
t2
byt
01 2 3 N-1 0 5-4-3-2-1 012 3465
: b\ f
1 1 -N/2+1 N/2
xl:nl/Ntl gl:nlzplt1
X X
i FFT -
Cink = Cenk G Cenk = Crnke cr
Neer

G r
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FFT

real space reciprocal space
G
cut
1 \
t2
|
byt
01 2 3 N-1 0 5-4-3-2-1 012 3465
: b\ f
1 1 -N/2+1 N/2
xl:nl/Ntl gl:nlzplt1
X X
i FFT -
Cink = Cenk G Cenk = Crnke cr
Neer

G r
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FFT

real space reciprocal space
G
cut
t2
byt
01 2 3 N-1 0 5-4-3-2-1 012 3465
: b\ f
1 1 -N/2+1 N/2
xl:nl/Ntl gl:nlzplt1
X X
i FFT -
Cink = Cenk G Cenk = Crnke cr
Neer

G r
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FFT

real space reciprocal space
G
cut
t2
byt
01 2 3 N-1 0 5-4-3-2-1 012 3465
t b \ f
1 1 -N/2+1 N/2
xl:nl/Ntl gl:nlzplt1
X X
i FFT -
Cink = Cenk G Cenk = Crnke cr
Neer

G r

Marsman



FFT

real space reciprocal space
G
cut
SpawrA
byt
01 2 3 N-1 0 5-4-3-2-1 012 3465
t b \ f
1 1 N2+t N/2
xl:nl/Ntl gl:nlzplt1
X X
i FFT -
Cink = Cenk G Cenk = Crnke cr
Neer

G r

Marsman



Why use plane waves?

@ Historical reason: Many elements exhibit a band-structure that can
be interpreted in a free electron picture (metallic s and p elements).
Pseudopotential theory was initially developed to cope with these
elements (pseudopotential perturbation theory).

@ Practical reason: The total energy expressions and the Hamiltonian
H are easy to implement.

@ Computational reason: The actiollj i can be e ciently evaluated
using FFT's.
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Evaluation ofHj i
+ V(r)  nk(r)

NI =

using the convention
h_J-G_'_ki:%ei(G*'k)r!h G+k] nki:CGnk

@ Kinetic energy:

. . . 1. .
hG + kj J nkl = EJG + kj?Cg nk N npLw

2
@ Local potential: V = Vy[ ]+ Vic[ ]+ Vext
) Exchange-correlation: easily obtained in real spad&c:.r = Vxc[ r]
) FFT to reciprocal spacef Vxc.rdf  Vxc:c @
) Hartree potential: Poisson equation in reciprocal spacéi.c = jéﬁ G
) add all contributions Vg = Vh.c + Vxc:c + Vext:c
) FFT to real spacefVedf Vig

The action

X .
ViCrnke er Nrer 109 Nger

MG + KjVj i = —
NFrr
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The action of the local potential

2G¢yt
)
- — X
| ap @ FFT
&
e Ve Ve Yy
Geut 3Geut ¢

s, i | B
-

G

Rr (residual vector)

A [
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TAGS and links

Sampling the BZ

The KPOINTS le The le that speci es the k-point sampling for a VASP run.

Sampling the Brillouin zone A lecture from the VASP workshop in Vienna (2003).

De ning the structure

The POSCAR le The le that speci es the con guration of the simulation cell.

INCAR tags

PREC=(N)ormal j (A)ccurate
Sets the precision with which densities and potentials are representk (the amount of aliasing one allows, if any),
and the plane wave basis set kinetic energy cuto (when ENCUT is not ®t explicitly).

ENCUT (or ENMAX) = [real]
Plane wave basis set kinetic energy cuto for WFs.

Introduction to DFT , DFT in depth Lectures from the VASP workshop in Vienna (2003).
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The PAW method

The number of plane waves needed to describe
@ tightly bound (spatially strongly localized) states

@ the rapid oscillations (hodal features) of the wave functions near the
nucleus

exceeds any practical limit, except maybe for Li and H.

The common solution:

@ Introduce the frozen core approximation:
Core electrons are pre-calculated in an atomic environment and kept

frozen in the course of the remaining calculations.

@ Use pseudopotentials instead of exact potentials:
) Norm-conserving pseudopotentials
) Ultra-soft pseudopotentials
) The Projector-Augmented-Wave (PAW) method
[P.E. Blechl, Phys. Rev. B 50, 17953 (1994)
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2.5

) e ® gl
il 7
Q ‘ e 15 i/ 5 TE=-U576 Rc=I9

P

>
‘G /\
Q . 205 ; =% P TE=-U205 Rc=I9
k 0_0 1 1 1
v 3

=]
- 5 1.0

o

1 2 4
/ \ R (a.u.)

exact potential (interstitial region)  pseudopotential

Al effective Alatom  PAW Al atom
3p 2p 3p
3s 1s 3s

5 2p and 1s are nodal structure

nodeless ! is retained
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X
joai=j&i+ (i) Si)hajSi
i
@ j€,i is a pseudo wave function expanded in plane waves
@ | i, j%i, andjpi are atom centered localized functions

@ the all-electron partial waveg ;i are obtained as solutions to the
radial scalar relativistic Schmdinger equation for the spherical
non-spinpolarized atom

1 o -
( 5+ Vediil= i
@ a pseudization procedure yields

joiilj €i Ve | & IFﬂjeii: ij
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o the pseudo partial waveli obey

1 X L X oL
5t Bt jpiDjhgj j&i= « 1+ jpiQjhgj j&i
ij ij

@ with the socalled PAW parameters:
Qj =hij ;i h &j§i
1 - o1 A
Dj =hij S+ Vejjih& 5+ e]§i

The all-electron and pseudo eigenvalue spectrum is identical, all-electron
scattering properties are reproduced over a wide energy range.
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15F T T T T T 3

1st s-channel: 1 =iE E
" n L e e NN B
Mn 4s "bound" state ay: b 1
pay E
-15 | ) | -
0 T T, 2 T3
2nd s-channel: , 1sF I ‘ ‘ ]

Mn s "non-bound" state e
05 f N\ E
-l.-5 : | , | :
0 T T, 2 [—

Frozen core approximation:
X

Ve [ vl= VUL v+ VAl zel+ Ve[ v+ ] v(r) = ajj i(r)j2
B [&]= vile]+ vule]+ viclen + &]  e(r)=  a&j&(n)j?
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jeni \/
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jeni \/

o P oL i
j &l (Gihgj & —
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i€

" —

€i  iGihpj&i —

._P..._P_...j /\
Cai (J&ihpj i+ ) iihgj & i \/\/ 7
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@ Character of wavefunctionc,

j oni = J i

ore

OQ

@ Same trick works for

pseudor

¢ Wavefunctions
@ Charge density

= Mom | i

X X )
J Im 1CGm

Oo Op
O OO

pseudo-onsite AE-onsite

s Kinetic energy
o Exchange correlation energy
e Hartree energy
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The kinetic energy

@ For instance, the kinetic energy is given by

1

X .
Ewn = fnh nj 2

n
@ By inserting the transformation { = Im )

Joni

. . . . X . . . . . .
foai=jmi+ (i j Tii)bejTai
i

into Exin one obtains:Ex, = E E'+ E! (assuming completeness)

.01 .. XX .1 .. XX o1
i fnh™j 5 j i o i h7ij > J,—|+Site i hij > jji
| {z } | (i) I o (i) {z }
E =g El
@ j is an on-site density matrix:
ij = fnh~n]ﬁ|hp‘JJ~n|

n
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@ For any (quasi) local operatorA there exists a PS operator

X
A=A+ jmi hijAj i h AT ]

so that
h jAj i = h&AjEi
@ For instance the PS operator that corresponds to the density operato

jrihrj is given by

X

jrihrj + jpii hojribrj i h Tjrihej i by

ij

and the density

X
hjrihrj i = hejrihrj€ +  h&pi hjrihrj ;i h ~jrikrj5i hpj i
ij

or) e+ '

@ Non-local operators are more complicated
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The Hartree energy

@ The pseudo-wavefunctions dwot have the same norras the AE
wavefunctions inside the spheres

@ To deal with long range electrostatic interactions between spheres a
soft compensation chargé is introduced (similar to FLAPW).

Vo 9e| e VO
U0 e @@ U0

pseudo + compens. pseudo+comp. onsite AE-0

@ Hartree energy become€y = E E'+ E!

X X
En[~+"] En [+ 71+ Enl ']

sites sites

~1 one-center pseudo charge "' one-center compensation
charge

Marsman



PAW energy functional

Total energy becomes a sum of three ternis:= E+ E!  E?

X 1
E = fnh™j 5 ] i+ Exe[~+ "+ ~c]+
" z
Enl[~+ "1+ Vkl=zc(Hr)+ () & + U(R;Zion)
. X X . o
E° = ij h7ij 5 JTGi+ Exe[+ M+ ~c]+
it i
sites (i ) 7
En[L+71+  vu[=zc] () +7(r) dr
1 X X I T
E* = ij D] 5 Jji+ Exc[ 1+ o]+
sites  (i;j )

Z
En[ 1+ i [ ze] H(r) dPr

r

Marsman



@ E is evaluated on a regular grid
Kohn-Sham functional evaluated in a plane wave basis set

with additional compensation charges to account for the incorrect
norm of the pseudo-wavefunction (very similar to ultrasoft
pseudopotentials).

e= fn& €, pseudo charge density
n compensation charge

o E! andE! are evaluated on radial grids centered around each ion.
Kohn-Sham energy evaluated for basis se®g andf ;g

these terms correct for the shape di erence between the pseudo and
AE wavefunctions.

@ No cross-terms between plane wave part and radial grids exist.
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@ The pseudo wave functionst,i (plane waves!) are the
self-consistent solutions of
1 X o X Ca
5t % + jBi(Dy+:)hgj j&i= n 1+  jBiQ;hgj |&i

ij ij

1 L. 1 A
Dj =hij 5t Ve [yl ji h &j >t e [e]iSi

1 x . . . . X . . - .
V(I') = i h ijrlhr] jI eFVL(r) = i heijr|hrje,-|
ij ij

X . - . -
i = fnhenlﬁmﬂlen'

n

@ If the partial waves form a complete basis within the PAW spheres,
then the all-electron wave functions ,i are orthogonal to the core
states!
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Accuracy

Subset of G2-1 test set: Deviation PAW w.r.t. GTO, in [kcal/mol].

— 10
(@]

E sf

S s

=,

s °r

T 2F

>

o

2

& °r

S 4

o

2 4L = PBE(G03)-PBE(V)

N o PBEO(G03)-PBEO(V)

€ gL

o

cU 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KN
o

LiH CH H,0  SiH C,H, HCN CHOH P, SO  SiH

BeH CH, ~SiH, CH, 'CN HCO° Co, “sio clo %o

4 3 22 2

j Eaej < 1kcal/mol.
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Accuracy

Relative PBE bond lengths of €I CIF, and HCI for various GTO basis
sets speci ed with respect to plane-wave results:

aug-cc-pvVXZ (X= D,T,Q,5)
N.B.: aug-cc-pV5Z basis set for Cl contains 200 functions!
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X
joni=j"hi+ Gwmij mi)bom i

Im

@ | T,i is the variational quantity of the PAW method.

@ The PAW method is often referred to as an all-electron method.
Not in the sense that all electrons are treated explicitly, but in the
sense that the valence electronic wave functions are kept orthogonal
to the core states.
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ore

0 0o
@ 09 O

OO0

pseudo + compens. pseudo+comp. onsite AE-0

@ This general scheme applies to all operators.

@ Sometimes one may choose to include only parts of the PAW
expressions.

lazy: only implement plane wave part (GW, ...)
e cient: physics of localized orbitals; only spheres (LDA+U,

DMFT, .

)
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Hartree-Fock/DFT hybrid functionals

De nition: Exchange correlation functionals that admix a certain amount
of Fock exchange to (a part of) a local or semi-local density functional.

@ Present a de nite improvement over the (semi)-local density
functional description of the properties of molecular systems.

@ Some hybrid functionals yield an improved description of structural,
electronic, and thermo-chemical properties of small/medium gap
solid state systems.

Marsman



Hartree-Fock Theory

Slater determinant 1(r) 1(ra) n(ra)
1 1(r2)  a(r2) N (r2)

(ra :::;rN):pﬁ : : :
1(rn)  2(rn) N(rn)

(ri;ro)= PIE 1(re) 2(r2)  1(r2) 2(ra)

Pauli exclusion principle:( r1;r2)=0 for 1= o
Z

3+ VO WO O+ W) (9= ()

Orbital dependent:
X M compare to DFT:Vyc[n](r) i(r)
ir 9

No electronic correlation!

Vy (r;r9 =
j
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Hybrid functionals: PBEO, HSEO3

PBEO:

4 4

non-empirical:justi ed using the adiabatic connection formula.
J. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996.

1 3
PBEO _ HF PBE PBE
EXC EX + EX + EC

HSEO3:

E)I(-|CSE03 - %E;‘F;SR( )+ ZE)I(:’BE;SR( )+ E;—’BE;LR( )+ E(I::’BE

decomposed Coulomb kernel (Savin et. al.):

r}: S (+L ()= erfcr(r)+ erf(rr)

semiempirical: is chosen to yield an optimal description of the
atomization energies of the molecules in Pople's G2-1 test set.

J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (Q03).
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Hybrid functionals: B3LYP

B3LYP
EX

0:8ELPA +0:2ELF +0:72 EZ®
0:19E WN3 4+ 0:81ELYP

B3LYP
EC

Semiempirical:coe cients chosen to reproduce experimental atomization
energies, electron and proton a nities and ionization potentials of the
molecules in Pople's G2 test set and their atomic constituents.

A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

M. J. Frisch et al., GAUSSIANO3 Rev. C.02, Gaussian Inc., Wallingford, CT 2®@4.
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Computational aspects

X Z Z
EXT / rd®r® 1 (1) qm (K1Y qm(r) kn ()
kn;gm
with 1 el | %
o erfc( jr r
K(r,r")-jr = or g

@ FFT overlap density to reciprocal space
(G)=FFT f 4n(rY kn(r9g
@ division by Laplace operator and FFT to real space
V(G) = JGJZ (G), andV (r) = FFT fV(G)g

@ evaluate R 3
kn (1) qm(NV(r)d°r

N.B.: for all combinations ok, g, n, andm
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X Z Z
ERF/ Brar® (1) gm(MK 1Y () «n (9

kn;gm

E ort:
(N bands Nk)(Nbands Nq) Nerr In NEpr

® Bulk: Npands/ Natoms, Nk /' 1=Ngtoms

) Nerr INNger /- Natoms

@ Molecular systemsNy =1

3
) Nbands Nbands NFFT In NFFT / Natoms
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Computational aspects: Downsampling

Convergence oE " w.r.t. the BZ sampling used to represem/ "

PBEO HSEO03
T T T T T T T T
oF b oF :
-15- A -15- :
S -30r g S’ 30f ]
() Q ]
£ -45- y £, 450 :
g 60 B g -60- :
Euf -75L i @ 750 :
-90F B w90 1
-105( y -105[ :
-120f y -120f i
L L L Il L L Il L L L L L 11
24 12 8 6 4 3 24 12 8 6 4 3

q q

Example: Al (fcc)
Short(er) range in real space) Reduced BZ sampling
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Downsampling cont.

1 band
2 k-points

2 bands
1 k-point

unit cells k-points
1 , n
n 1

Marsman



Assume a maximum interaction randge = mL, then a supercell of twice
this size, i.e.2m unit cells, correctly incorporates all interactions using

onlyk =0 )

This equivalent to the description one obtains using a single unit aet

an equidistantzm sampling of the 1st BZ.

Ergo: reducing the range of the Fock exchange interaction in the HSE
functional allows for the representation of the Fock potential on a ceurs
grid of k-points.
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The HSE Fock exchange energy
e X

EER( ): 2Wk2quknfqm

kn;gm

2z N

dra’r I (1) (1) an (1) (e
The representation of the corresponding short-range Fock potential
reciprocal space

ViR G;G% =tk + GjVR[ Jik+ G% =
4e2 X o f X Cqm(G® G®Cqm(G G%
A jk a+ G

mq G 00

1 el k a+G%%=a ?

Full g-grid:
m m ms, .
fgg= fN—ib1+ N—zb2+ N—jbgjmi =0;:; N 19
Downsampledq-grid:

x , ,
fage = fk + mi%bijmi :O;:::;& 19

i=1

Marsman



Atomization energies of small molecules

Subset of G2-1 test set: Deviation w.r.t. experiment, in [kcal/mol].

N
o

=
o

-10

| oo EXP-PBE(V)
-20 == EXP-PBEO(V)

atomization energy error [kcal/mol]

_30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LH CH_ H0 SH, CH, HCN CHOH P, SO SiH
BeH CH, ®SiH, CH,” CN H,CO° co, “sio clo ’ 8o,

Signi cant improvement of atomization energies
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G2-1 test set (55 molecules): atomization energies

ME and MAE w.r.t. experiment, in [kcal/mol]

ME MAE
PAW  GTO PAW GTO
PBE +6.43 +6.85 8.57 8.79
PBEO 1.47 1.04 3.65 342
PBE 0.42 ::: 0.46 :::
PBEO 0.42 ::: 0.49

@ PAW calculations: only, 10 11 12 A3, 1000 eV cuto

@ GTO calculations: aug-cc-pV5Z basis set

J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 238102 (2005).
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Solid state systems

Set of test systems

Metals: Na, Mg, Li, Al, Cu, Rh, Pd, Ag
'Small' gap: Si, GaAs, BP, GaP, SiC,-GaN, C, BN, MgO
‘Large’ gap: NacCl, LiCl, NaF, LiF

Lattice constants, bulk moduli
Band gaps

Atomization energies

Transition metal monoxides

Adsorption of CO ond-metal surfaces
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Solid state systems: PBE

N

=
a1
1

T

o
[$)]
1

0_

S
ol
1

S
=
c
©
8
[%2]
c
[e]
o
=]
s
=
o
o
o
o
£
(0]
©
o

I PBE-VASP
] PBE-FLAPW
[ PBE-GO3

| N

J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
J. Paier, et al., J. Chem. Phys. 124, 154709 (2006).

T T T
GaAs MgO Na Al

@ Overall PAW-GTO agreement good:
MAE(PAW)=0.029 A, MAE(GT0)=0.026 A.

@ Sizeable discrepancies for Li, Al, C, Si, SiC, GaAs, Rh, and Ag.
Probably due to basis set related inaccuracies in the GTO calculations
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Solid state systems: PBE, PBEO, and HSEOQ3

Lattice constants and bulk moduli

Solid PBE HSEO3 PBEO Exp.

ao B ao B ao B ao B
Cc 3.574 431 3.550 466 3.549 467 3.567 443
Si 5.469 87.8 5.439 96.5 5.433 99.0 5.430 99.2
GaAs 5.752 59.9 5.696 69.5 5.672 72.9 5.648 75.6
MgO 4.258 149 4212 168 4211 169 4.207 165
Na 4.200 7.80 4.225 8.45 4.229 8.22 4.225 7.50
Al 4.040 76.6 4.025 81.1 4.012 86.0 4.032 79.4
Rh 3.830 254 3.786 285 3.785 291 3.798 269
All systems:
ME 0.039 12.3 0.012 2.6 0.007 0.1
MAE  0.045 124 0.024 8.6 0.022 7.9
No metals:
ME 0.048 13.4 0.010 0.4 0.003 1.9
MAE  0.048 134 0.022 5.7 0.019 5.4

Values given inA and GPa, respectively.
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PBE, PBEO, HSEO3, B3LYP: lattice constants
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Solid state systems: band gaps
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Solid state systems: Atomization energies

-10

5
w
f_:-ZO
o
<
’a?_-ao
e EPBE
40 HHSEO3
HB3LYP
-50 | | | | | | | | | |
Na Mg Pd Ag Si BP C LiCl NaF LiF
PBE PBEO HSEO3 B3LYP
ME 0.045 0.228 0.184 0.590
MAE 0.134 0.286 0.252 0.590
in eV/atom.
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@ Hybrid functionals overestimate the exchange splitting in
d-elements: leads to an increased stability of the spin-polarized
atom.

@ B3LYP overestimates,. of localized electrons.

@ B3LYP fails to describe ‘free electron like' behaviour:
LYP underestimates correlation energy in itinerant systems
(does not attain HEG limit!).

J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 024103 (200
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Heats of formation
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Figure 7. Relative error in the PBE, PBEO, HSEO03, and B3L'
heats of formation with respect to experiment.
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Transition metal monoxides:

Intensity (arb.)

108 6 4 2 0 2 4 6 8 1
Relative Binding Energy (eV)

Comparison between PBEO d-
projected DOS (bottom) of both Mn
sites together with the experimental
(top) inverse photoemission data
and the dierence between on- and
0 -resonance photoemission spectra.

DOS (States/eV - atom - spin)

0 8 6 4 2 0 2 4 6 8 iC
Energy (eV)
C. Franchini, V. Bayer, R. Podloucky, J. Paier, and G. Kresse, Phys. Rv. B 72, 045132 (2005).
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Transition metal monoxides cont.

a (A) Ms ( 8) (eV)

MnO  LDA 4.31 4.14 0.4
HSEO3  4.44 4.52 2.8

exp. 4.45 4.58 3.9

FeO LDA 4.17 3.26 -
HSEO3  4.33 3.63 2.2

exp. 4.33 3.32/4.2 2.4

CoO LDA 4.10 2.23 -
HSEO3  4.26 2.67 3.4

exp. 4.25 3.35/4.0 2.5

NiO LDA 4.06 1.06 0.4
HSEO3  4.18 1.65 4.2
exp. 4.17 1.64 4.0
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CO adsorption on d-metal surfaces

@ DFT predicts incorrectly that CO prefers the
hollow site; P. Feibelman et al., J. Phys.
Chem. B 105, 4018 (2001)

@ unclear why, but the error is relatively large;
best DFT/PBE calculations:
CO@Cu(111): 170 meV
CO@Rh(111): 40 meV
CO@Pt(111): 100 meV

@ 4 layers,c(2 4), =0 :25ML, asymmetric
setup, 10A vacuum.
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CO adsorption on d-metal surfaces cont. |

CO @ top fcc hcp
Cu(111) PBE 0.709 0.874 0.862 0.165
PBEO 0.606 0.579 0.565 0.027
HSEO3 0.561 0.555 0.535 0.006
exp. 0.46-0.52

Rh(111) PBE 1.870 1.906 1.969 0.099
PBEO 2.109 2.024 2.104 0.005
HSEO3 2.012 1913 1.996 0.016

exp. 1.43-1.65

Pt(111) PBE 1.659 1.816 1.750 0.157
PBEO 1.941 1.997 1.944 0.056
HSEO3 1.793 1.862 1.808 0.069

exp. 1.43-1.71
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CO adsorption on d-metal surfaces cont. Il

Hybrid functionals reduce the tendency to stabilize adsorption at the
hollow sites w.r.t. the top site.
reduced CQ2 metal-d interaction

@ Improved description of the CO LUMQ2( ) w.r.t. the Fermi level
(shifted upwards).

@ Downshift of the metald-band center of gravity in Cu(111).
@ But: Overestimation of the metatl-bandwidth.

A. Stroppa, K. Termentzidis, J. Paier, G. Kresse, J. Hafner, Phys. Rev.B 76, 195440 (2007).
A. Stroppa and G. Kresse. New Journal of Physics 10, 063020 (2008).
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Conclusions

Implementation:

@ Only small discrepancies between the PAW and GTO atomization
energies for molecular systems at the PBE and hybrid functional
level.

@ For solid state systems the PAW and GTO results already di er at
the PBE level; probably basis set related inaccuracies in the GTO
calculations. PAW results validated through a comparison with
FLAPW calculations.

@ Range decomposition of the Coulomb kernel in the HSE functional
allows for a reduced Brillouin zone sampling in the representation of
the Fock potential; the HSE results remain similar to the PBEO
results.
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Conclusions cont.

Solid state systems:

@ The PBEO and HSE hybrid functionals provide an improved
description of the structural (lattice constants and bulk moduli) and
electronic (band gap) properties of systems with a small/medium
sized band gap.

@ PBEO, HSE, and B3LYP atomization energies are in overall worse
agreement with experiment than those obtained using the semi-local
PBE density functional, in case of B3LYP even drastically so. This
is mainly due to a worse description of metallic systems.

@ CO adsorption ord-metal (111) surfaces: hybrid funtionals reduce
the tendency to stabilize adsorption at the hollow sites w.r.t. the
top site.
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TAGS and links

INCAR tags

Hybrid functionals and Hartree-Fock The VASP manual chapter on hybrid functionals and Hartree-Fock.
LHFCALC Switch on Hybrid and Hartree-Fock type calculations.

HFSCREEN Speci es the range separating parameter in HSE functionals.

ENCUTFOCK Specici es the FFT grids used in the HF routines.

NKRED, NKREDX, NKREDY, NKREDZ, etc Downsampling the k-point mesh in the representation of the Fock
potential.

GGA-tag Override the type of density functional speci ed in the POTCAR.

AEXX, AGGAX, AGGAC and ALDAC The fractions of Fock-exchange, gradient corrections to the exchangeand
correlation, and the fraction of LDA correlation.

PBEO: LHFCALC = .TRUE.

HSE06Y LHFCALC = .TRUE. ; HFSCREEN = 0.2 (with PBE POTCAR, or GGA = PE).

B3LYP: LHFCALC = .TRUE. ; GGA = B3 ; AEXX = 0.2 ; AGGAX = 0.72 ; AGGAC = 0.81 ; ALDAC = 0.19
Hartree-Fock: LHFCALC = .TRUE. ; AEXX = 1.0 ; ALDAC = 0.0 ; AGGAC =0

YA. V. Krukau , O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
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New density functionals: \new GGAs for solids"

AMO5

PHYSICAL REVIEW B 72, 0851082005

Functional designed to include surface effects in self-consistent density functional thec

R. Armientd* and A. E. Mattssoh’
IDepartment of Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sw
2Computational Materials and Molecular Biology MS 1110, Sandia National Laboratories, Albuquerque,
New Mexico 87185-1110, USA

PBEsol

week endin
PRL 100, 136406 (2008) PHYSICAL REVIEW LETTERS 9

4 APRIL 2008

Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces

John P. PerdewAdrienn Ruzsinszky,Gbor I. Csonk& Oleg A. Vydrov? Gustavo E. Scuserfil ucian A. Constantitf,
Xiaolan Zhout and Kieron Burke
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118, USA
2Department of Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
3Depa\rtment of Chemistry, Rice University, Houston, Texas 77005, USA
“Donostia International Physics Center, E-20018, Donostia, Basque Country
SDepartments of Chemistry and of Physics, University of California, Irvine, Irvine, California 92697, USA

Better description of lattice constants and bulk moduli, and (jellium)
surface energies.
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Lattice constants

CSONKAet al. PHYSICAL REVIEW B 79, 1551072009

TABLE I. Statistical data for the equilibrium lattice constastlof the 18 test solids of Re88 at 0 K calculated from the SJEOS. T
Murnaghan EOS vyields identical results within the reported number of decimal places. Experimental low temget&irkd lattice
constants are from Re56 d.id Ref.57 Na, Kd Ref.58 sAl, Cu, Rh, Pd, Agl and Ref59 sNaCld The rest are based on room tempera
values from Ref60 sC, Si, SiC, Ge, GaAs, NaF, LiF, Mgfand Ref57 4.iCld corrected to thd=0 limit using the thermal expansion frc
Ref. 58 An estimate of the zero-point anharmonic expansion has been subtracted out from the experimentativalabke lld sThe
calculated values are precise to within 0.001 ! for the given basis sets, altheagssian GTO1 and GTO2 basis-set incompleteness il
the accuracy to 0.02 dGTO1: the basis set used in R8B. GTO2: For C, Si, SiC, Ge, GaAs, and MgO, the basis sets were taker
Ref. 41. For the rest of the solids, the GTOL1 basis sets and effective core potentials froB8Refte used. The best theoretical values
in boldface. The LDA, PBEsol, and PBE GTO2 results are from R&fThe SOGGA GTOL1 results are from Réb.

LDA LDA PBEsol PBEsol PBEsol AMO5 SOGGA PBE PBE PBE TPS

GTO2 VASP GTO2 BAND VASP VASP GTO1 GTO2  vasp BAND BAND
ME?d d "0.047  "0.055 0.022 0.010 0.012 0.029 0.009 0.075 0.066 0.063  0.04¢
MAE® ¢ d 0.050 0.050 0.030 0.023 0.023 0.036 0.024 0.076 0.069 0.067  0.05z
MRE® %d "1.07 "1.29 0.45 0.19 0.24 0.58 0.19 1.62 1.42 1.35 0.99
MARE? £%d 1.10 1.15 0.67 0.52 0.52 0.80 0.50 1.65 1.48 1.45 1.10
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TAGS and links

GGA= AM | PS Select the AMO5 or PBEsol GGA functional.
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Electronic optimization

Direct minimization of the DFT functional (Car-Parrinello, modern)
Start with a set of wavefunction§ ,(r)jn =1;::; Ne=2g (random
numbers) and minimize the value of the functionalefation)

Gradient: Fn(r) =

:; r2+ve (r;f n(ro)g) n n(r)

e

The Self Consistency Cycle (old fashioned)
Start with a trial density , set up the Schradinger equation, and solve it
to obtain wavefunctions (r)

2
2m6r2+ Ve (f (199) ()= n n(r)  n=1;:5Ne=2

P
as a result one obtains a new charge densify) = ,j n(r)j2 and a
new Schmdinger equatiol iteration

Marsman



Direct mimization vs. SCC
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G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).



Direct optimization (charge sloshing)

The derivative of the total energy w.r.t. the wave functiorh ,j is

X X
joni="fn 1 i mih mj A i+ %Hnm (fn fm)i mi

m m

whereHnm = h mjHj ni.

E j— unoccupied charge
. — occupied
Consider two states _—5 /\/
K)r i(k,: + K)r p— potential

ai (ke

n m
slowly v%rying charge
0 — 0 4pe/ G
n= nt Sm m = m S n strong change in potential
2
i2 kr 2 s4de i2 kr
ry=2 sRee Vu(r)= =——-—Ree
(") "= 27

The smallestj kj/ 1=L where L is the largest dimension of the supercell.
) the response of the potentialVy / L?) stable step size s/ 1=L?
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A naively straightforward algorithm

Express the Hamiltonian in the plane wave basis set and diagonalize it
H = hGjH[ ]jG°i! diagonalizeH 'f i; ig i =1;:; Nger
Self-consistency

ol Ho! %1 1=f(o; %1 Hyp!

iterate until = ©

BUT: we do not needNger  one-electron orbitals, at a cost oO(N ey ) ...
we only need theNy, lowest eigenvectors oH

) lterative diagonalization ofH aimed at nding its Ny lowest eigenvectors
(Nb Ne| =ce||)

Blocked Davidson algorithm, RMM-DIIS, ...
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The Self-Consistency Cycle

trial-charge i» and trial-wavevectors n

2

set up HamiltonianH ( in )

b

|

iterative re nements of wavefunctionsf

P .

’ new charge density out = "

o fni n(r)j2

b

’ re nement of density in; ouww ) NEW in

thﬁﬁth

|

calculate forces, update ions

]

@ two subproblems

optimization of
f ngand in

re nement of
density:

DIIS algorithm

P. Pulay, Chem. Phys. Lett.
73, 393 (1980)

re nement of
wavefunctions:
DIIS or Davidson
algorithm
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Key ingredients: Subspace diagonalization and the Rés

@ Rayleigh-Ritz: the diagonalization of theN, Ny subspace

X X a
Hnm Bmk = kpp Shm Bmk

m m
with
Hom = h oj#j mi and  Smm :Ph niSi mi
The N, eigenvalues/eigenvectorsg™ andj «i = |, Bmkj mi are the

best approximation to the exactN, lowest eigenvalues oft within the
subspace spanned by the one-electron orbitals, .

@ The residual vector:

_ hajHj i
wp = I ol
ST T

(its norm is a measure of the error in the eigenvector).

JR( n)i =(|Zi appé)j ni; with
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The blocked Davidson algorithm

@ Take a subset of all band$ ,jn=1::;Ng)f }jk=1;::n1g

®

L
o
]

Extend this subset by adding the (preconditioned) residual vectors
to the presently considered subspace

f e=gc= K(H apS) ijk=1;:5n19

Raighley-Ritz optimization (\sub-space" rotation) in the 2n,
dimensional subspacé ;=g g to determine then; lowest
eigenvectorsf Zjk =1;::n1g.
Extend the subspace with the residuals from 2g

f == = K(H  apS) kik=1;:mg

Raighley-Ritz optimization) f ~ Zjk =1;:;n1g
etc ...
The optimizedf ['jk =1;:;n1g replacef ,jn=1;:;n:9

@ Move on to subsetf }jk = n;+1;:;n2g, ..., etc, ...

After treating all bands: Raighley-Ritz optimization of ,jn=1;:;Ng
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Charge density mixing (RMM-DIIS)

Minimization of the norm of residual vector
Rl in]= outlin] in JR[inli) min
with  ou (¥) = P occupied Wk Frk ] nk (0)j?
DIIS algorithm is used for the optimization of the norm of the residual vector.
Linearization of R[ in] around sc (linear response theory)
R[1=J( sc)

with the charge dielectric functionJ

R )

4 e2
leads to a?

R[ in]: out[ in] in = J( in sc)
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Divergence of the dielectric function

Eigenvalue spectrum of determines convergence

4 e2
\Broader" eigenvalue spectrum) slower convergence

@ For insulators and semi-conductors, the width of the eigenvalue
spectrum is constant and system size independent }{

@ For metals the eigenvalue spectrudiverges its width is
proportional to the square of the longest dimension of the cell:

@ Short wavelength limitJ 1 (no screening)
o Long wavelength limith  1=g? / L? (metallic screening)

Complete screening in metals causes charge sloshing
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The dielectric matrix

0.4

. . . 0.3
@ Use a model dielectric function

that is a good initial approximation _

0.21—
for most systems

0.1

— AMIX .
J b G =max( q‘§+ v AMIN 0

G (LAY

@ This is combined with aconvergence accelerator

The initial guess for the dielectric matrix is improved using
information accumulated in each electronic (mixing) step (DIIS).
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Return to direct optimization: Why?

Pure DFT functional depends only on the density

3+ Ve LI+ Ver () n(D= 0 ()

DFT-Hartree-Fock Hybrid functional depends explicitly on the waviinctions

XCC Z
b Ve [N+ Vea (1) n()+C (D) wdroz i

m

n(r)

NI =

so density-mixing will not work (reliably).

Unfortunately we know direct optimization schemes are prone to afge
sloshing for metals and small-gap systems.
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Mixed scheme

@ The gradient of the wave functions is given by

o X a0 X o
joni = fn 1 j mih mj FTj ni + EHnm fn fm)j mi
m m
with Hom = h mjBj i
@ A search direction towards the groundstate w.r.t. unitary transfmations
between the orbitalswithin the subspace spanned by wave functions can
be found from perturbation theory
H nm

Unm = m S————
H mm H nn

but this is exactly the term that is prone to charge sloshing!

@ Solution: Use density mixing to determine the optimal unitary
transformation matrix U nm .
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Optimal subspace rotation

@ De ne a Hamilton matrix Hiy = h (JH[ ]j «i

whereH[ 1= T+ Vo + Ve [ 1+ W[ g;ff Q]
@ Determine the subspace rotation matrix/ that diagonalizesH y
@ Recompute the (partial) occupancies f f %

@ The transformed orbitals |V, | and partial occupancied f % de ne a
new charge density ©
@ mix and °
@ and iterate the above until a stable point is found
@ H% = h njH[ s]j ni de nes the optimal subspace rotation
. H®
Hin  HR®

Umm = mm

@ N.B.: we do not update the orbital dependent part of the Hamiltonian
W' g:ffgl
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The full mixed scheme

The iterative optimization of the wavefunctions cycles through the
following steps:

@ construct the HamiltonianH , from the current wavefunctions and
partial occupancies, and calculatéj i;

@ inner loop: determine the self-consistent Hamiltoniahi *¢, de ning
the preconditioned direction for the subspace rotatibh

Q minirp,ization along the preconditioned search direction, de ned by
(1 ml mih mDHAj i, U, and a gradient acting on the partial
occupancies. For instance by means of a conjugate-gradient
algorithm.

This loop is repeated until the change in the free energy from one
iteration to the next drops below the required convergence threshold
Ewr (usually10 # eV).
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It works: fcc Fe

olcell 4

o2cells |

o4 cells -

Bogg E

_ EMEMEGG%
uP AR =
s 90003
- O’Oo@ 3
=2 o) E
k=] 'O@ 3
Ooi

P T W
107 10 20 3(

Iteration
The convergence behaviour of HSEO3 calculations using the improvedirect minimization procedure (solid lines)
and a standard conjugate gradient algorithm (dotted lines). Calculations on single, double, four times, and eight

times repeated cells are marked with circles ( ), diamonds (} ), squares (), and triangles (4 ), respectively.
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TAGS and links

INCAR tags

ALGO The INCAR tag that sets which algorithm is used for the electronic minimization.

IALGO and LDIAG Same as above, but more to choose from (ALGO is the preferred tag). For the @ect optimizers
(ALGO =All j Damped) LDIAG = .TRUE. swithches on the density mixer in the determination of the subspace
rotation matrix.

Mixing tags The VASP manual chapter on the settings for the density mixer.

TIME Time step in the direct optimization method ALGO = Damped, and trial ti me step for the conjugate
gradient direct optimizer ALGO = All.

Electronic optimization Lecture from the VASP workshop in Vienna (2003).
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Hartree-Fock within the PAW formalism

In principle we would want to follow the original scheme

@ solve the non-spinpolarized spherical atom within the
(scalar relativistic) Hartree-Fock approximation

@ compute all-electron partial waves
@ pseudize ... etc etc ...
Unfortunately this is already problematic in the second step, solving
( 5+ v+ Oi 0= i i
with

ay ref Z

LLTRTN o) o

=) numerically unstable for unbound partial waves witk O.
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The HF-PAW method (cont.)

A pragmatic approximate solution;

o keep the partial waves and projector functionjs i, j€ii, andjpg;i)
obtained with DFT.

@ orthogonalize the all-electron partial waves;i with respect to the
Hartree-Fock core states: ji!j 9.

@ compute the PAW parameters usirig’ and Hartree-Fock core

states:

Dy = h{ 5+ VALI+VALET+ I 5 l+ g I Dl
hej 5+ vhlell+ vile]+ oI g

and Qj = h,] % h &j§i

DFT 11 Wi HF

The most important step is in this schemer, 7¢I
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The HF-PAW method (cont.)

Bulk equilibrium volumes for GaAs and Si

Valence electrons GaAs: ¢ (A3)

Valence electrons Sii o (A3)
Ga As PAW  HF-PAW si PAN CHE-PAW
4s24pt 4s24p3 46.06 48.79 2.2
3s23 41.44 41.86
3d104s24p? 4s24p3 47.07 47.80 2¢2 P 22
65410 52 5 1 10 5.2 ,.3 s“2p°3s“3p 41.91 41.93
3p63d104s24p 3d104s24p 47.74 47.80

3s and 3p levels in the spherical Si atom.

3s%3p? 2s22p®3s%3p? HF ref.
PAW HF-PAW PAW HF-PAW
3s -15.967 -15.918 -15.895 -15.908 -15.906
3p -2.761 -2.756 -2.749 -2.756 -2.760
-13.205 -13.161 -13.146 -13.151 -13.147

All energies in eV.
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The HF-PAW method (cont.)

The remaining discrepancies are related to the fact that the one-center
expansions of the wave functions inside the PAW spheres are not
complete enough (particularly further away from the nucleus)

X X
n(r) 6 iOhejS%i &) 6 S(hejSi

i i
This causes problems for at least two reasons:

@ The core-valence exchange interaction is computed between the
Hartree-Fock core stateg HF g and the one-center expansion of
only.

@ The point where the Hartree potentials arising from the all-electron
and pseudo ionic cores match moves into regions where the
one-center expansions are not good. This is bound to happen to
some degree since we adjugt[ 25711 vi[ JF] and leave
Vi [ezc] xed.
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The HF-PAW method (cont.)
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The HF-PAW method (cont.)
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The HF-PAW method (cont.)
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TAGS and links

INCAR tags
LRHFATM = .TRUE. Changes the DFT AE core charge density (1) to a Hartree-Fock one.
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Talks and examples

Handson sessions

Handson Session 1
Handson Session 2
Handson Session 3
Handson Session 4

Lectures

| N

SESSION 1: Introduction to Computational Materials Science
SESSION 2:  Introduction to DFT

SESSION 3: Pseudopotentials |

SESSION 4: Pseudopotentials I

SESSION 5:  Sampling the Brillouin zone
SESSION 6: lonic relaxation methods
SESSION 7: Electronic relaxation methods
SESSION 8: Computational Platforms
SESSION 10: Accuracy and Validation of results
SESSION 11: Pseudopotential Data Base
SESSION 12: DFT in depth

SESSION 13: Unpaired electrons in DFT

Marsman



Some literature

Hybrid functionals in VASP

\The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis
set", J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 22, 234102 (2005).

\Screened hybrid density functionals applied to solids", J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber,
and J. G. Angyan, J. Chem. Phys. 124, 154709 (2006); Erratum to the previous, J. Chem. Phys. 125, 249901
(2006).

\Why does the B3LYP hybrid functional fail for metals”, J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys.
127, 024103 (2007).

\Hybrid functionals applied to extended systems", M. Marsman, J. Paier, A. Stroppa, and G. Kresse, J. Phys.:
Condens. Matter 20, 064201 (2008).
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