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o PBCs, k-points, plane waves, DFT
© Projector Augmented Wave method
© Hybrid functionals

@ New density functionals

© Reaching the electronic groundstate

@ Hartree-Fock in PAW
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A system of NN electrons

HY(ry,...,ry) = E¥(ry,....,rN)

_,ZA +ZV r; +Z|I'z—1‘g| U(ry,...,ry) = EU(ry,...,rn)

i#]
Many-body WF storage requirements are prohibitive

(F#grid points)N

Map onto “one-electron” theory

W(ry, .., tn) = {P1(r), Pa(r), ... P (r)}

such as Hohenberg-Kohn-Sham density functional theory
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Do not need ¥(r1,...,ry), just the density p(r):

Elp] = Ts[{eilpl ] + Eulpl + Exclpl + Ezlp] + U[Z]

= N . = S ()2 E _1 Md dr’
U(ry,nrn) = [[wilr)  p(r) = [vi(x)| ulpl = 5 v — ] T
One-electron Kohn-Sham equations

(—%A + Vz(r) + Vi [pl(r) + VXC[PKF))%(I“) — en(r)

Hartree Exchange-Correlation
!
Vel = [ 2D a Beld = i) =2

Per definition: Exc = E — Ts — Eg — Eext

In practice: Exchange-Correlation functionals are modelled on the uniform
electron gas (Monte Carlo calculations): e.g., local density approximation
(LDA).
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@ Translational invariance implies the existence of a good quantum
number, usually called the Bloch wave vector k. All electronic
states can be indexed by this quantum number

|Pi)

@ In a one-electron theory, one can introduce a second index,
corresponding to the one-electron band n,

‘wnk>

@ The Bloch theorem states that the one-electron wavefunctions obey
the equation:

wnk(r + R) = wnk(r)eikR

where R is any translational vector leaving the Hamiltonian
invariant.

@ k is usually constrained to lie within the first Brillouin zone in
reciprocal space.
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@ The evaluation of many key quantities, e.g. charge density,
density-of-states, and total energy) requires integration over the
first BZ. The charge density p(r), for instance, is given by

o) = o > / Do) Pk

@ f,k are the occupation numbers, i.e., the number of electrons that
occupy state nk.

@ Exploiting the fact that the wave functions at k-points that are
close together will be almost identical, one may approximate the
integration over k by a weighted sum over a discrete set of points

p(r) =D wie fuc|mic(r) [Pk,
n k

where the weights wy sum up to one.
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The intractable task of determining ¥(ry,...,ry) (for N ~ 10?3) has
been reduced to calculating ¢,k (r) at a discrete set of points {k} in the
first BZ, for a number of bands that is of the order of the number of

electrons per unit cell.
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Monkhorst-Pack meshes

Idea: equally spaced mesh in Brillouin-zone.

Construction-rule:

kp'r‘s = upbl + u,bs + usbs

_ 2r—gr—1,, _
Up = #r— 1,2,...,q,
b; reciprocal lattice-vectors
qr determines number of
k-points in r-direction
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b2
@ quadratic 2-dimensional lattice 1/2 k]
@ ¢1 = g2 = 4 = 16 k-points e ol @,; k2
3 -
- , o o ,@‘é b,
@ only 3 inequivalent k-points (= IBZ) ol N
o4xk1:(§,§)¢m:% e o o o IBZ
°4Xk2:(§7§):>w2:% e o o .\BZ
o 8xky=(35,5) >ws=3

oy J Fk)dk = F (ki) + ;F(k2) + 5 F(ks)
BZ
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Algorithm

Algorithm:
@ calculate equally spaced-mesh

@ shift the mesh if desired

apply all symmetry operations of Bravais lattice to all k-points

@ extract the irreducible k-points (= IBZ)

calculate the proper weighting

Common meshes: Two choices for the center of the mesh
@ centered on I' (= I belongs to mesh).

@ centered around T'. (can break symmetry !I)
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Example - hexagonal cell

before affer shiffed to T"
symmetrization

@ in certain cell geometries (e.g. hexagonal cells) even meshes break
the symmetry

@ symmetrization results in non equally distributed k-points

@ Gamma point centered mesh preserves symmetry
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@ The total energy
Elp, AR, Z}] = Ts[{¢nx[pl}] + Eulp.{R, Z}] + Exc[p] + U{R, Z})
@ The kinetic energy

Lol = 30 3 wnfus k] — 5 Alins)
k

n

@ The Hartree energy

Bulp, {R, Z}] = //pez ez () 1t

—r'|
where pez(r) = p(r) + >, Zid(r —
@ The electronic charge density

=D wicfuklthni(r) [Pdk,
n k

@ The Kohn-Sham equations

(—32+ Virlpez) () + Vaelpl1)) () = €oncinac(r)

@ The Hartree potential

Vilper)(w) = [ 22 0 ae
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@ Introduce the cell periodic part u,y of the wavefunctions

Yk (r) = Uni(r)e™™
with unk(r + R) = upk(r).

@ All cell periodic functions are now written as a sum of plane waves
1 .
— G G+k)r
unk(r) - W Z C’Gnkel T ¢nk( ) QI/Z Z CGnkel( )x
G

I‘) — Z pGeiGr V(I‘) _ Z VGeiGr
G G
@ In practice only those plane waves |G + k| are included for which

1
§‘G + k‘z < Ecutoff
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real space reciprocal space

G

cut

2
sz
01 2 3 N-1 0 5-4-3-2-101 2 345
Tl by \ f
—=N/2+1 N/2
xl:nl/N T glzn127t/*c1
Gr FFT ;
Crnk = Z Conke'™ —— Cgnk = Z Crnke™ iGr
e NFFT
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real space reciprocal space

G
cut
| \
)
|
sz
01 2 3 N-1 0 5 -4-3-2-101 2 3 45
Tl by \ f
—=N/2+1 N/2
xl:nl/N T glzn127t/*c1
gr FFT ;
Crnk:ZCGnkBZ ¥ —— Cgnk = —— Zcrnke iGr
e NFFT
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real space reciprocal space

G

cut
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real space reciprocal space

G

cut

sz
01 2 3 N-1 0 5-4-3-2-101 2 345
Tl by \ f
—=N/2+1 N/2
xl:nl/N T glzn127t/*c1
Gr FFT ;
Crnk = Z Conke'™ —— Cgnk = Z Crnke™ iGr
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Why use plane waves?

@ Historical reason: Many elements exhibit a band-structure that can
be interpreted in a free electron picture (metallic s and p elements).
Pseudopotential theory was initially developed to cope with these
elements (pseudopotential perturbation theory).

@ Practical reason: The total energy expressions and the Hamiltonian
H are easy to implement.

@ Computational reason: The action H|v) can be efficiently evaluated
using FFT's.
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Evaluation of H|¢,k)
(-58+V®) vurto)

using the convention

1 2 r
< |G + k> Ql/2 € (@+k) - <G + k|?/1nk> - CGnk

@ Kinetic energy:
1 1
(G+k|l - §A\wnk> = §|G+k\2CGnk Nxprw

@ Local potential: V = Vu[p| + Vic[p] + Vext
) Exchange-correlation: easily obtained in real space Vicr = Vic[pr]
FFT to reciprocal space {Vic,r} — {Vic,c}
Hartree potential: Poisson equation in reciprocal space Vu,g = Gz PG

)
)
) add all contributions Vg = Vi, + Vac,g + Vext,a
)
T

FFT to real space {Va} — {V:}
he action

—iGr

<G + k|v|wnk NFFT lOg NFFT
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The action of the local potential

2G eyt

R Rr (residual vector)

J
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TAGS and links

Sampling the BZ

The KPOINTS file The file that specifies the k-point sampling for a VASP run.

Sampling the Brillouin zone A lecture from the VASP workshop in Vienna (2003).

Defining the structure

The POSCAR file The file that specifies the configuration of the simulation cell.

INCAR tags

PREC=(N)ormal | (A)ccurate
Sets the precision with which densities and potentials are represented (the amount of aliasing one allows, if any),
and the plane wave basis set kinetic energy cutoff (when ENCUT is not set explicitly).

ENCUT (or ENMAX) = [real]
Plane wave basis set kinetic energy cutoff for WFs.

Introduction to DFT, DFT in depth Lectures from the VASP workshop in Vienna (2003).
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vasp/vasp/KPOINTS_file.html
http://cms.mpi.univie.ac.at/vasp-workshop/slides/k-points.pdf
vasp/vasp/POSCAR_file.html
vasp/vasp/PREC_tag.html
vasp/vasp/ENCUT_tag.html
http://cms.mpi.univie.ac.at/vasp-workshop/slides/dft_introd.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/dft_depth.pdf

The PAW method

The number of plane waves needed to describe
@ tightly bound (spatially strongly localized) states

@ the rapid oscillations (nodal features) of the wave functions near the
nucleus

exceeds any practical limit, except maybe for Li and H.

The common solution:

@ Introduce the frozen core approximation:
Core electrons are pre-calculated in an atomic environment and kept
frozen in the course of the remaining calculations.

@ Use pseudopotentials instead of exact potentials:
) Norm-conserving pseudopotentials
) Ultra-soft pseudopotentials
) The Projector-Augmented-Wave (PAW) method
[P.E. Blochl, Phys. Rev. B 50, 17953 (1994))
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o O o :
L 815

- §1.0
Sk 0.0
exact potential (interstitial region)  pseudopotential

Al effective Al atom  PAW Al atom
3p 2p 3p
3s 1s 3s
5 2p and 1s are nodal structure
nodeless !!!! is retained

= 7

Eo -

:\/ S TE=-0576 Rc=T.9

F J’

s P E=-0205 R¢=1.9

0 1 2 3 4
R (a.u.)
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[tn) = |wn+2|¢>z |6:)) (Bl )

) |1Zn> is a pseudo wave function expanded in plane waves
® |¢), |¢:), and |p;) are atom centered localized functions

@ the all-electron partial waves |¢;) are obtained as solutions to the
radial scalar relativistic Schrodinger equation for the spherical
non-spinpolarized atom

(5 + ven)lon) = ilo)

@ a pseudization procedure yields

|6s) — | Veff — Ueff <l7i|<2~5j> = 0yj
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o the pseudo partial waves | ) obey

(= 58+Ter+ 315D ) 6w = ex (14 3 15)Qus 73l ) )

ij
@ with the socalled PAW parameters:
Qij = (ilo;) — (dil@;)
1 ~ 1 o~
Di; = (¢ — il Vett| @) — (di] — A+ Vet | B;)

The all-electron and pseudo eigenvalue spectrum is identical, all-electron
scattering properties are reproduced over a wide energy range.
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1st s-channel: ¢;
Mn 4s "bound” state 0.

2nd s-channel: €5 1.
Mn s "non-bound” state 0.

Frozen core approximation:

Vet [pw] = vi[po] + vE[P2ze] + Vaclpo + 0] pu(r) = Z ailgi(r)|?

Vott[Pv] = vE[Pu] + vE[PZC] + Vac[Po + Pe] pu(r) = Z ai|$i(r)|2
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@ Character of wavefunction: c¢jme = <ﬁlme|1/~)n>

|thn) = ) = ime)eime + Y |[Gime) Cime
~ o] 00
0 . 1O O

pseudo pseudo-onsite AE-onsite
@ Same trick works for
@ Wavefunctions ® Kinetic energy

. @ Exchange correlation ener,
o Charge density ° Hartreegenergy ®
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The kinetic energy

@ For instance, the kinetic energy is given by

1
Eyin = ZfTL('L/}n‘ - §A|"/]n>
@ By inserting the transformation (i = lme)

¥n) = \wn+2|¢z |6:)) (i ln)

into Eyin one obtains: Fyin = E—FE! + E! (assuming completeness)

S il = 5AI) = 573 (Bl = 5 A+ 303 pustenl - 5 Al)

site (4,5) site (i,5)

E Bl El
@ p;; is an on-site density matrix:

Pij = Z fn<1/~1n |15z‘><13j |1;n>
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@ For any (quasi) local operator A there exists a PS operator

A=A+ 2In (t@ilAles) — (3:1416,)) (5|

so that

W|Alp) = (| Al)

@ For instance the PS operator that corresponds to the density operator
|r){r| is given by

e+ 2 1) (@il irles) — (Gilr)irld,) ) @]

and the density

W) (elw) = @Il + > (W15 (40ule)irls) — (Gilr)ixlds) ) (5sl)

= B0 -5 () + ')

@ Non-local operators are more complicated
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The Hartree energy

@ The pseudo-wavefunctions do not have the same norm as the AE
wavefunctions inside the spheres

@ To deal with long range electrostatic interactions between spheres a
soft compensation charge p is introduced (similar to FLAPW).

09 ©O¢9

pseudo + compens. pseudo+comp. onsite AE-onsite

@ Hartree energy becomes: Ey = E — E' + E*

Eulp+pl— Y _ Eulp' +p'1+ > Eulp']

sites sites

p' one-center pseudo charge p' one-center compensation
charge
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PAW energy functional

Total energy becomes a sum of three terms: E = E + E' — E*

E

El

- 1 -
Bulp+ 71+ [ vulpz) (50) + o) &' + U(R, Ziow)
S { st - 5l + Bl A 54 A+

sites ™ (i,5)

Eyp* + ] +/
Q,

S { S pted - Al + Bl o] +

sites ™ (i,5)

Eulp]+ [ onlpzls' @ d3r}

nlpzd (@) + o) e}

Marsman



@ F is evaluated on a regular grid
Kohn-Sham functional evaluated in a plane wave basis set

with additional compensation charges to account for the incorrect
norm of the pseudo-wavefunction (very similar to ultrasoft
pseudopotentials).

p=3 Fthntiy pseudo charge density
p compensation charge

@ E' and E' are evaluated on radial grids centered around each ion.
Kohn-Sham energy evaluated for basis sets {¢;} and {¢;}

these terms correct for the shape difference between the pseudo and
AE wavefunctions.

@ No cross-terms between plane wave part and radial grids exist.
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@ The pseudo wave functions |¢,,) (plane waves!) are the
self-consistent solutions of

(=32 + Vet 3 IFDi+) 55l ) 19) = e (143 P Qus 1) 1)

j
1 ~ 1 1 1T
Dy = (1] = 5+ vlalpd)|és) — (i = 3+ Tal7E1I6;)

py(r) = Zﬂij (ilr)(rlp;)  pu(r) = ZPU@HF)@@)

@ If the partial waves form a complete basis within the PAW spheres,
then the all-electron wave functions |¢,,) are orthogonal to the core
states!
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Accuracy

Subset of G2-1 test set: Deviation PAW w.r.t. GTO, in [kcal /mol].

— 10

O L

E of

S eF

=,

s

o 2r

>

D o

2

3

c 4

'% A s+ PBE(G03)-PBE(V)
N +—o PBEQ(G03)-PBEO(V)
€ gL

S [

(“_10 LiIH : (:IHIHOI iI ICIH IH(I:NICHIOHI F; : SI S

0 SiH
BeH CH, ‘bH ‘N H,CO° Co, “si0 clo ° %o,

|AEaR| < 1 kcal/mol.



Accuracy

Relative PBE bond

lengths of Cly, CIF, and HCI for various GTO basis
sets specified with respect to plane-wave results:

1.03
1.025
¢

1.02
1.015

4
1.01

1.005

QO Cl, rel. bond length
[ £ CIF rel. bond length
A AHCI rel. bond length

DZ

N.B.: aug-cc-

aug-cc-pVXZ (X= D,T,Q,5)

pV5Z basis set for Cl contains 200 functions!
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W’n) = |1Ln> + Z (|¢lme> - |¢lm5>) <ﬁlm,e|l/;n>

lme

-] |1,;n> is the variational quantity of the PAW method.

@ The PAW method is often referred to as an all-electron method.
Not in the sense that all electrons are treated explicitly, but in the
sense that the valence electronic wave functions are kept orthogonal
to the core states.
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D¢ Og ®¢ Tg
Cel 0o O@ ¢

pseudo + compens. pseudo+comp. onsite AE-onsite

@ This general scheme applies to all operators.

@ Sometimes one may choose to include only parts of the PAW
expressions.

lazy: only implement plane wave part (GW, ...)
efficient: physics of localized orbitals; only spheres (LDA+U,
DMFT, ..., )
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Hartree-Fock/DFT hybrid functionals

Definition: Exchange correlation functionals that admix a certain amount
of Fock exchange to (a part of) a local or semi-local density functional.

@ Present a definite improvement over the (semi)-local density
functional description of the properties of molecular systems.

@ Some hybrid functionals yield an improved description of structural,
electronic, and thermo-chemical properties of small/medium gap
solid state systems.

Marsman



Hartree-Fock Theory

Slater determinant (G
(

U(ry,..ry) = — : :

Yi(rn) a(ry) -0 ¥n(rN)
1
V2

Pauli exclusion principle: ¥(ry,re) = 0 for ¢ = 1

U(ry,ro) = (% (r1)¢a(ra) — wl(rz)wg(m))

(= 58+ Vo) + Vialol6)) () + [ Vet )o(ey” = st
Orbital dependent:

N s (v (!
o) = SO0

=Ty

compare to DFT: Vi [n](r)y;(r)

J
No electronic correlation!
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Hybrid functionals: PBEO, HSE03

PBEO:
EfgsEo _ iE:Ic{F + EEEBE + ESBE

non-empirical: justified using the adiabatic connection formula.
J. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).

HSEO03:

FHSE03 _ }EHF,SR + §EPBE,SR 4+ EPBELR( ) | pPBE
Xc 4 X /’l’ 4 X /’l’ X l’(‘ C

decomposed Coulomb kernel (Savin et. al.):

erfe(ur) n erf(ur)

L= 5,0+ () = T .

semiempirical: g is chosen to yield an optimal description of the
atomization energies of the molecules in Pople's G2-1 test set.

J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
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Hybrid functionals: B3LYP

EPWYP — 08EXPA 4 0.2EXF +0.72AFF®

EZWYT = 0.19EXWN3 +0.81EEYT
Semiempirical: coefficients chosen to reproduce experimental atomization

energies, electron and proton affinities and ionization potentials of the
molecules in Pople's G2 test set and their atomic constituents.

A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

M. J. Frisch et al., GAUSSIANO3 Rev. C.02, Gaussian Inc., Wallingford, CT 2004.
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Computational aspects

E;’IFOC Z //d?)rdsl‘/'ll)i:n(r)d}qm(r)[{(r’ I'I)w:;m(rl)wkn(rl)

kn,qm

with

-
K(r,r') = 1 or erfe(ulr — ')
SR v

@ FFT overlap density to reciprocal space
p(G) = FFT{yg, (r')tun(r') }
@ division by Laplace operator and FFT to real space
V(G) = 425 0(G), and V(r) = FFT{V(G)}

@ evaluate

[ ¥t () g (r)V (r)d°r
N.B.: for all combinations of k, q, n, and m
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BT oc ) / / e, (1) am (1)K (8,705 (1) ien ()

kn,gm

Effort:
(Nbands X Ni)(Nbands X Ng) X Neer In Nepr

® Bulk: Npands ¢ Natoms, Nk 1/A]\fatoms

= NFFT In NFFT X Natoms

@ Molecular systems: N, =1

3
= Nbands X Nbands X NFET I Nrr1 ¢ Niioms

Marsman



Computational aspects: Downsampling

Convergence of EIF w.r.t. the BZ sampling used to represent V,1F

PBEO HSE03
T T T T T T T T
or 7 oF i
-5 : -15F Fﬂz:\\
S -30f : > -s0r .
g a5t ] £ -45f ]
3 -60 b |_|8_| -60+ 7
2 750 1 & 75 .
& gof . W 90f .
-105F . 105 .
-1207 —— | | L \7 -1207 1 1 | | 1 \i
24 12 8 6 4 3 24 12 8 6 4 3

q q

Example: Al (fcc)
Short(er) range in real space => Reduced BZ sampling
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Downsampling cont.

1 band
2 k-points

2 bands
1 k-point

unit cells k-points
1 & n
n 1

Marsman



Assume a maximum interaction range R = mL, then a supercell of twice
this size, i.e. 2m unit cells, correctly incorporates all interactions using
only k=0 =

This equivalent to the description one obtains using a single unit cell and
an equidistant 2m sampling of the 1st BZ.

Ergo: reducing the range of the Fock exchange interaction in the HSE
functional allows for the representation of the Fock potential on a courser

grid of k-points.
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| Basics PAW_Hybrids_NewDF _Optimization _HF-PAW |
The HSE Fock exchange energy

2
BN == 5 3 2wvafionfan

kn,gm

/ / Prd’r Mw ) am (F) B (') ren ().

The representation of the corresponding short-range Fock potential in
reciprocal space

Vit (G,G) =k + G|V [u][k + G') =

471—62 C;TVL( G//)Cqm (G — G”)
_ Q ZQ'Uqu'ZImZ |k—q+G”|2

Gl/
% (1 _ e*\k*q+G”\2/4u2) .
Full g-grid:
ma mo ms3
={—"—b —b —bs|m; =0,...., N; — 1
{a} {N1 S AL R slmi =0 }

Downsampled g-grid:
{ahe = {k+2mz b =0, o — 1}
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Atomization energies of small molecules

Subset of G2-1 test set: Deviation w.r.t. experiment, in [kcal/mol].

N
o

e
o

o

'
=y
o

| oo EXP-PBE(V)
- = EXP-PBEOQ(V)

atomization energy error [kcal/mol]
)
o

1 1 1 1
CH H0 SiH, CH, HCN CHOH P, SO SiH

&
S

Li
BeH CH,  SiH, CH,” CN H,CO® CO, “Si0 CIO " 80,

Significant improvement of atomization energies
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G2-1 test set (55 molecules): atomization energies

ME and MAE w.r.t. experiment, in [kcal/mol]

ME MAE
PAW  GTO PAW GTO
PBE +6.43 +46.85 857 8.79
PBEO —-1.47 —-1.04 3.65 3.42
PBE —0.42 0.46
PBEO —0.42 0.49

@ PAW calculations

@ GTO calculations:

. T only, 10x11x12 A3, 1000 eV cutoff

aug-cc-pV5Z basis set

J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102 (2005).
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Solid state systems

Set of test systems
@ Metals: Na, Mg, Li, Al, Cu, Rh, Pd, Ag
@ 'Small’ gap: Si, GaAs, BP, GaP, SiC, 5-GaN, C, BN, MgO
@ 'Large’ gap: NaCl, LiCl, NaF, LiF

@ Lattice constants, bulk moduli
@ Band gaps

@ Atomization energies

@ Transition metal monoxides

@ Adsorption of CO on d-metal surfaces

Marsman



Solid state systems: PBE

2
M PBE-VASP
1.5 B PBE-FLAPW
: O PBE-G03
1_
0.5+

o

T T T T T T
C GaAs MgO Na Al Rh

| m

rel. error of latt. constant [%]
S
o
1

@ Overall PAW-GTO agreement good:
MAE(PAW)=0.029 A, MAE(GT0)=0.026 A.

@ Sizeable discrepancies for Li, Al, C, Si, SiC, GaAs, Rh, and Ag.
Probably due to basis set related inaccuracies in the GTO calculations.

J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
J. Paier, et al., J. Chem. Phys. 124, 154709 (2006).

Marsman



Solid state systems: PBE, PBEO, and HSE03

Lattice constants and bulk moduli

Solid PBE HSE03 PBEO Exp.

ao B ag B ag B ag B
C 3.574 431 3.550 466 3.549 467 3.567 443
Si 5.469 87.8 5.439 96.5 5.433 99.0 5.430 99.2
GaAs 5.752 59.9 5.696 69.5 5.672 72.9 5.648 75.6
MgO 4.258 149 4212 168 4211 169 4.207 165
Na 4.200 7.80 4.225 8.45 4.229 8.22 4.225 7.50
Al 4.040 76.6 4.025 81.1 4.012 86.0 4.032 79.4
Rh 3.830 254 3.786 285 3.785 291 3.798 269
All systems:
ME 0.039 —-12.3 0.012 —-2.6 0.007 -0.1
MAE 0.045 12.4 0.024 8.6 0.022 7.9
No metals:
ME 0.048 —13.4 0.010 0.4 0.003 1.9
MAE 0.048 13.4 0.022 5.7 0.019 5.4

Values given in A and GPa, respectively.
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PBE, PBEO, HSE03, B3LYP: lattice constants

4O0F o pee E
F o PBEO 1
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Relative error in the PBE, PBEO, HSEQ3, and B3LYP lattice constants with respect to experiment.
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Solid state systems: band gaps

Theory (eV)
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Solid state systems: Atomization energies

-20

-30

rel. error of AE [%]

I N PBE
a0l B HSEO03
I EB3LYP

N | | | ! | ! | | ! |
%0 Na Mg Pd Ag Si BP C LiCl NaF LiF

PBE PBEO HSE03 B3LYP
ME —0.045 —-0.228 —0.184 —0.590
MAE 0.134 0.286 0.252 0.590

in eV/atom.

Marsman



@ Hybrid functionals overestimate the exchange splitting in
d-elements: leads to an increased stability of the spin-polarized
atom.

@ B3LYP overestimates E,. of localized electrons.

@ B3LYP fails to describe 'free electron like' behaviour:
LYP underestimates correlation energy in itinerant systems
(does not attain HEG limit!).

J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 024103 (2007).
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Heats of formation

10
0_— 7 [ % __
L % % % i
| HE L :
s + W 7 % ]
< 10 % g
5 ' W ]
£ - Z 4
I -
§ '20__ B PBE N
- PBEO E
30 O HSEo3 ]
- O B3LYP E
4oL [ [ [ ]
SiC NaCl NaF
MgO LiCl LiF

Figure 7. Relative error in the PBE, PBEO, HSE03, and B3LYP
heats of formation with respect to experiment.
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Transition metal monoxides: MnO

Intensity (arb.)

.
4 2 0 2

=
o
£
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. > ]
Comparison  between PBEO d- 2 21 Mn2, d e
. 3 1f ]
projected DOS (bottom) of both Mn Z
sites together with the experimental %’ -1f A
a 2r ]

(top) inverse photoemission data
and the difference between on- and 08k

— PBEO
off-resonance photoemission spectra. 04k PR
0 / [ P A TN
-0 8 6 4 -2 0 2 4 6 8 10

Energy (eV)
C. Franchini, V. Bayer, R. Podloucky, J. Paier, and G. Kresse, Phys. Rev. B 72, 045132 (2005).
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Transition metal monoxides cont.

ao (A) M. (ps) A (eV)

MnO LDA 431 4.14 0.4
HSEO3 4.44 4.52 2.8
exp. 4.45 4.58 3.9

FeO LDA 4.17 3.26 -
HSEO03 4.33 3.63 2.2

exp. 4.33 3.32/4.2 2.4

CoO LDA 4.10 2.23 -
HSEO3 4.26 2.67 3.4
exp. 4.25 3.35/4.0 2.5

NiO LDA 4.06 1.06 0.4
HSEO3 4.18 1.65 4.2
exp. 4.17 1.64 4.0
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CO adsorption on d-metal surfaces

@ DFT predicts incorrectly that CO prefers the
hollow site; P. Feibelman et al., J. Phys.
Chem. B 105, 4018 (2001)

@ unclear why, but the error is relatively large;
best DFT/PBE calculations:
CO@Cu(111): —170 meV
CO@Rh(111): —40 meV
CO@Pt(111): —100 meV

@ 4 layers, ¢(2 x 4), © = 0.25 ML, asymmetric
setup, 10A vacuum.
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CO adsorption on d-metal surfaces cont. |

CO@ top fcc hcp A
Cu(111) PBE 0.709 0.874 0.862 —0.165
PBEO 0.606 0.579 0.565 0.027
HSEO03 0.561 0.555 0.535 0.006
exp. 0.46-0.52

Rh(111) PBE 1.870 1906 1.969 —0.099
PBEO 2.109 2.024 2.104 0.005
HSEO3 2.012 1.913 1.996 0.016

exp. 1.43-1.65

Pt(111) PBE 1.659 1.816 1.750 —0.157
PBEO 1.941 1.997 1.944 —0.056
HSEO03 1.793 1.862 1.808 —0.069

exp. 1.43-1.71
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CO adsorption on d-metal surfaces cont. |l

Hybrid functionals reduce the tendency to stabilize adsorption at the
hollow sites w.r.t. the top site.
reduced CO 27* — metal-d interaction

@ Improved description of the CO LUMO (27*) w.r.t. the Fermi level
(shifted upwards).

@ Downshift of the metal d-band center of gravity in Cu(111).

@ But: Overestimation of the metal d-bandwidth.

A. Stroppa, K. Termentzidis, J. Paier, G. Kresse, J. Hafner, Phys. Rev. B 76, 195440 (2007).
A. Stroppa and G. Kresse. New Journal of Physics 10, 063020 (2008).
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Conclusions

Implementation:

@ Only small discrepancies between the PAW and GTO atomization
energies for molecular systems at the PBE and hybrid functional
level.

@ For solid state systems the PAW and GTO results already differ at
the PBE level; probably basis set related inaccuracies in the GTO
calculations. PAW results validated through a comparison with
FLAPW calculations.

@ Range decomposition of the Coulomb kernel in the HSE functional
allows for a reduced Brillouin zone sampling in the representation of
the Fock potential; the HSE results remain similar to the PBEO
results.
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Conclusions cont.

Solid state systems:

@ The PBEO and HSE hybrid functionals provide an improved
description of the structural (lattice constants and bulk moduli) and
electronic (band gap) properties of systems with a small/medium
sized band gap.

@ PBEOQ, HSE, and B3LYP atomization energies are in overall worse
agreement with experiment than those obtained using the semi-local
PBE density functional, in case of B3LYP even drastically so. This
is mainly due to a worse description of metallic systems.

@ CO adsorption on d-metal (111) surfaces: hybrid funtionals reduce
the tendency to stabilize adsorption at the hollow sites w.r.t. the
top site.
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TAGS and links

INCAR tags

Hybrid functionals and Hartree-Fock The VASP manual chapter on hybrid functionals and Hartree-Fock.
LHFCALC Switch on Hybrid and Hartree-Fock type calculations.

HFSCREEN Specifies the range separating parameter in HSE functionals.

ENCUTFOCK Specicifies the FFT grids used in the HF routines.

NKRED, NKREDX, NKREDY, NKREDZ, etc Downsampling the k-point mesh in the representation of the Fock
potential.

GGA-tag Override the type of density functional specified in the POTCAR.

AEXX, AGGAX, AGGAC and ALDAC The fractions of Fock-exchange, gradient corrections to the exchange and
correlation, and the fraction of LDA correlation.

PBEO: LHFCALC = .TRUE.

HSE06: T LHFCALC = .TRUE. ; HFSCREEN = 0.2 (with PBE POTCAR, or GGA = PE).

B3LYP: LHFCALC = .TRUE. ; GGA = B3 ; AEXX = 0.2 ; AGGAX = 0.72 ; AGGAC = 0.81 ; ALDAC = 0.19
Hartree-Fock: LHFCALC = .TRUE. ; AEXX = 1.0 ; ALDAC = 0.0 ; AGGAC = 0

TA. V. Krukau , O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
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vasp/vasp/HF_type_calculations.html
vasp/vasp/LHFCALC.html
vasp/vasp/HFSCREEN_LTHOMAS.html
vasp/vasp/ENCUTFOCK_FFT_grid_in_HF_related_routines.html
vasp/vasp/NKRED_NKREDX_NKREDY_NKREDZ_EVENONLY_ODDONLY.html
vasp/vasp/GGA_tag.html
vasp/vasp/Amount_exact_DFT_exchange_correlation_AEXX_AGGAX_AGGAC_ALDAC.html

New density functionals: “new GGAs for solids”

AMO05

PHYSICAL REVIEW B 72, 085108 (2005)

Functional designed to include surface effects in self-consistent density functional theory

R. Armiento"* and A. E. Mattsson*"
'Department of Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
2Computational Materials and Molecular Biology MS 1110, Sandia National Laboratories, Albuquerque,
New Mexico 87185-1110, USA

PBEsol

k endi
PRL 100, 136406 (2008) PHYSICAL REVIEW LETTERS 4 APRIL 2008

Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces

John P. Perdcw,l Adrienn Ruzsinszky,' Gabor 1. Csonka,2 Oleg A. Vydmv,3 Gustavo E. Scuscria,3 Lucian A. Constamin,4
Xiaolan Zhou,' and Kieron Burke’

'Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118, USA
2Department of Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
3th[/mnment of Chemistry, Rice University, Houston, Texas 77005, USA
“Donostia International Physics Center, E-20018, Donostia, Basque Country
SDepartments of Chemistry and of Physics, University of California, Irvine, Irvine, California 92697, USA

Better description of lattice constants and bulk moduli, and (jellium)
surface energies.
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Lattice constants

CSONKA et al. PHYSICAL REVIEW B 79, 155107 (2009)

TABLE I. Statistical data for the equilibrium lattice constants (A) of the 18 test solids of Ref. 38 at 0 K calculated from the STEOS. The
Murnaghan EOS yields identical results within the reported number of decimal places. Experimental low temperature (5-50 K) lattice
constants are from Ref. 56 (Li), Ref. 57 (Na, K), Ref. 58 (Al, Cu, Rh, Pd, Ag), and Ref. 59 (NaCl). The rest are based on room temperature
values from Ref. 60 (C, Si, SiC, Ge, GaAs, NaF, LiF, MgO) and Ref. 57 (LiCl), corrected to the 7=0 limit using the thermal expansion from
Ref. 58. An estimate of the zero-point anharmonic expansion has been subtracted out from the experimental values (cf. Table II). (The
calculated values are precise to within 0.001 A for the given basis sets, although GAUSSIAN GTO1 and GTO2 basis-set incompleteness limits
the accuracy to 0.02 A) GTO1: the basis set used in Ref. 38. GTO2: For C, Si, SiC, Ge, GaAs, and MgO, the basis sets were taken from
Ref. 41. For the rest of the solids, the GTO1 basis sets and effective core potentials from Ref. 38 were used. The best theoretical values are
in boldface. The LDA, PBEsol, and PBE GTO2 results are from Ref. 14. The SOGGA GTOI results are from Ref. 15.

LDA LDA PBEsol PBEsol PBEsol AMO5 SOGGA PBE PBE PBE TPSS

GTO2 VASP GTO2 BAND VASP VASP GTO1 GTO2 VASP BAND BAND
ME®* (A) -0.047 -0.055 0.022 0.010 0.012 0.029 0.009 0.075 0.066  0.063 0.048
MAE® (A) 0.050 0.050 0.030 0.023 0.023 0.036 0.024 0.076 0.069  0.067 0.052
MRES (%) -1.07 -1.29 0.45 0.19 0.24 0.58 0.19 1.62 1.42 1.35 0.99
MARE! (%) 1.10 1.15 0.67 0.52 0.52 0.80 0.50 1.65 1.48 1.45 1.10
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TAGS and links

INCAR tags

GGA= AM | PS Select the AMO05 or PBEsol GGA functional.

Marsman


vasp/vasp/GGA_tag.html

Electronic optimization

Direct minimization of the DFT functional (Car-Parrinello, modern)
Start with a set of wavefunctions {¢,(r)|n =1, .., N./2} (random
numbers) and minimize the value of the functional (iteration)

B2 . ,
Ve () - €n> ()

Gradient: F,(r) = <

The Self Consistency Cycle (old fashioned)
Start with a trial density p, set up the Schrodinger equation, and solve it
to obtain wavefunctions v, (r)

<— 27;@ V2 4+ veff(r, {p(r’)})) U (r) = enthn(r) n=1,..N./2

as a result one obtains a new charge density p(r) = > |¢,(r)|? and a
new Schrodinger equation = iteration
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Direct mimization vs. SCC

disordered diamond, insulator disordered fcc Fe, metal

0 ":i} energy
o E ‘\i)é."
w o4k ={x direct u?
w o F Car-Rawrinello ui
96 ¢ { &
< n=1,24.8 =

n=8 _8 'x \\\\\\ wAwMMM\'wMMMM

1 B& self.consistent
uwhp n
Lal <
83 8

o

5. 10 15 20 0 10, 20
iteration forces iteration

G. Kresse and J. Furthmiiller, Phys. Rev. B 54, 11169 (1996).
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Direct optimization (charge sloshing)

The derivative of the total energy w.r.t. the wave function (| is

190) = fu (1= 3 [m)@oml ) Elon) + 37 5 Fm (f = fin)libm)

unoccupied charge
occupied
potential

slowly v%rying charge

o /o 4ne /G
’wn - ¢n +A5¢m 1/)m - wm _Asw" strong change in potential

where Hym = (Y| H|thn).

Consider two states

Py = ikE =3y ilkpokor

. 2 .
S5p(r) = 2AsRe T §Viy(r) = %R Ji2ker

The smallest |dk| < 1/L where L is the largest dimension of the supercell.

~

= the response of the potential §Vi o< L? = stable step size As o< 1/L?
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A naively straightforward algorithm

Express the Hamiltonian in the plane wave basis set and diagonalize it
H = (G|H[p]|G’) — diagonalize H — {t;,¢;} i =1, .., Nerr
Self-consistency
po — Ho — p' — p1 = f(po,p’) = Hi — ...

iterate until p = p’

BUT: we do not need Nprr one-electron orbitals, at a cost of O(Ngpr) ...
we only need the N} lowest eigenvectors of H

= lterative diagonalization of H aimed at finding its N, lowest eigenvectors
(Np & Nei/cell).

Blocked Davidson algorithm, RMM-DIIS, ...
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The Self-Consistency Cycle

/ trial-charge p;n and trial-wavevectors 1y,

set up Hamiltonian H (pin)

}

]

iterative refinements of wavefunctions {¢, }

‘ o

}

’ new charge density pout = >, fn|tn(r)|? ‘

l

’ refinement of density pin, pout = NeW pin ‘

o 5

calculate forces, update ions

]

"]

two subproblems
optimization of
{¢¥n} and pin
refinement of
density:

DIIS algorithm

P. Pulay, Chem. Phys. Lett.
73, 393 (1980)

refinement of
wavefunctions:
DIIS or Davidson
algorithm
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Key ingredients: Subspace diagonalization and the Residual

@ Rayleigh-Ritz: the diagonalization of the Ny x Nj subspace

Z Hntmk = Z €2pp»§ntmk
m m

with ~ . ~ .
Hy = (QnlH|Ym)  and  Swm = ($n|S[Pm)
The Ny eigenvalues/eigenvectors €;°P and [¢x) = >, Bimk|thm) are the

best approximation to the exact N, lowest eigenvalues of H within the
subspace spanned by the one-electron orbitals ,,,.

@ The residual vector:

2 & : <wn|ﬂ|¢n>
R(Yn)) = (H — appS n)s with €app = ~——F—+
| (w )> ( € )W’ > 1 € <¢n|5|¢n>

(its norm is a measure of the error in the eigenvector).
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The blocked Davidson algorithm

@ Take a subset of all bands {t¢,|n =1,..,N} = {¢}|k=1,..,m}

®

L
o
]

Extend this subset by adding the (preconditioned) residual vectors
to the presently considered subspace

{¢Ii/gli =KH - Eapps)zplﬂk =1, ..,n1}

Raighley-Ritz optimization (“sub-space” rotation) in the 2n,
dimensional subspace {¢}/gi} to determine the n; lowest
eigenvectors {7k = 1,..,n1}.

Extend the subspace with the residuals from {17}

{lbli/gllc/gl% =K(H - eapps)wak =1,.,m}

Raighley-Ritz optimization = {¢j|k = 1,..,n1}
etc ...
The optimized {¢}'|k = 1,..,n1} replace {¢n|n=1,..,n1}

@ Move on to subset {¢t|k = n1 + 1,..,n2}, ..., etc, ...

After treating all bands: Raighley-Ritz optimization of {¢n|n =1,.., N}
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Charge density mixing (RMM-DIIS)

Minimization of the norm of residual vector
Rpin] = pout[pin] = pin  [R[pin]| = min
Wlth Pout (fj = Zoccupied wkfnk"l/]nk (Fj‘2

DIIS algorithm is used for the optimization of the norm of the residual vector.

Linearization of R[pin]| around ps. (linear response theory)
Rlp] = —=J(p — psc)

with the charge dielectric function J

leads to a
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Divergence of the dielectric function

Eigenvalue spectrum of J determines convergence

J=1-x_U
X
4ane?

q2

“Broader” eigenvalue spectrum = slower convergence

@ For insulators and semi-conductors, the width of the eigenvalue
spectrum is constant and system size independent (€,)!

@ For metals the eigenvalue spectrum diverges, its width is
proportional to the square of the longest dimension of the cell:

@ Short wavelength limit J = 1 (no screening)
o Long wavelength limit J ~ 1/g2 « L2 (metallic screening)

Complete screening in metals causes charge sloshing
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The dielectric matrix

@ Use a model dielectric function
that is a good initial approximation
for most systems

1 .. 1 _ q? AMIX
J ~ Gq = max(m, AMIN)

G (1/A%

@ This is combined with a convergence accelerator.

The initial guess for the dielectric matrix is improved using
information accumulated in each electronic (mixing) step (DIIS).
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Return to direct optimization: Why?

Pure DFT functional depends only on the density
1
<_§A + Ver[p](r) + Vext(r)> Yn(r) = enthn(r)

DFT-Hartree-Fock Hybrid functional depends explicitly on the wave functions

occ

(-%Aweﬂ[p}(r)wexc( )wn HOD ¥ /w’” L' = oo

so density-mixing will not work (reliably).

Unfortunately we know direct optimization schemes are prone to charge

sloshing for metals and small-gap systems.
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Mixed scheme

@ The gradient of the wave functions is given by

190) = F (1= 32 [om) ol ) Eon) + 37 2 Fum (o = ) )
with Houn = (| H[tn)

@ A search direction towards the groundstate w.r.t. unitary transformations
between the orbitals within the subspace spanned by wave functions can
be found from perturbation theory

Hnm

Unm = 0pm — Ase—————

but this is exactly the term that is prone to charge sloshing!

@ Solution: Use density mixing to determine the optimal unitary
transformation matrix Uy,
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Optimal subspace rotation

@ Define a Hamilton matrix Hy; = (| H[p]|vx)

where H[p] = T + Vext + Vert[p] + VX' [{1}. {f}]
@ Determine the subspace rotation matrix V that diagonalizes Hy;
@ Recompute the (partial) occupancies — {f'}

@ The transformed orbitals Y, V¢ and partial occupancies {f'} define a
new charge density p’

@ mix p and p’

@ and iterate the above until a stable point is found — psc

@ H5, = (Y| H|[psc]|tn) defines the optimal subspace rotation

U = bon — Brgre P

@ N.B.: we do not update the orbital dependent part of the Hamiltonian

VR {0}, )]
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The full mixed scheme

The iterative optimization of the wavefunctions cycles through the
following steps:

© construct the Hamiltonian, H, from the current wavefunctions and
partial occupancies, and calculate H|4);

@ inner loop: determine the self-consistent Hamiltonian, H%, defining
the preconditioned direction for the subspace rotation U.

© minimization along the preconditioned search direction, defined by
(1=, [%m) (@m|)H 1), U, and a gradient acting on the partial
occupancies. For instance by means of a conjugate-gradient
algorithm.

This loop is repeated until the change in the free energy from one
iteration to the next drops below the required convergence threshold
AFEy, (usually 1074 eV).
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It works: fcc Fe

T T T TS
olcell 4

o2cells 7

o4cells

EEEGEEE —f

Euaagﬁé

00""@005

©004 §

o 7

Oo 3

Ooi

1079 10 20 30

Iteration
The convergence behaviour of HSEO3 calculations using the improved direct minimization procedure (solid lines)
and a standard conjugate gradient algorithm (dotted lines). Calculations on single, double, four times, and eight

times repeated cells are marked with circles (), diamonds (<>), squares (), and triangles (A), respectively.
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TAGS and links

INCAR tags

ALGO The INCAR tag that sets which algorithm is used for the electronic minimization.

IALGO and LDIAG Same as above, but more to choose from (ALGO is the preferred tag). For the direct optimizers
(ALGO =All | Damped) LDIAG = .TRUE. swithches on the density mixer in the determination of the subspace
rotation matrix.

Mixing tags The VASP manual chapter on the settings for the density mixer.

TIME Time step in the direct optimization method ALGO = Damped, and trial time step for the conjugate
gradient direct optimizer ALGO = All.

Electronic optimization Lecture from the VASP workshop in Vienna (2003).
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vasp/vasp/ALGO_tag.html
vasp/vasp/IALGO_LDIAG_tag.html
vasp/vasp/Mixing_tags.html
vasp/vasp/TIME_tag.html
http://cms.mpi.univie.ac.at/vasp-workshop/slides/optelectron.pdf

Hartree-Fock within the PAW formalism

In principle we would want to follow the original scheme

@ solve the non-spinpolarized spherical atom within the
(scalar relativistic) Hartree-Fock approximation

@ compute all-electron partial waves
@ pseudize ... etc etc ...

Unfortunately this is already problematic in the second step, solving

(3 v+ )16} = il6)

with

at.ref

7’|’UX‘¢1 Z Qsa /¢*|I'—I‘/| dr’

= numerically unstable for unbound partial waves with ¢ < 0.
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The HF-PAW method (cont.)

A pragmatic approximate solution:
), and |p;))

@ keep the partial waves and projector functions (|¢;),
obtained with DFT.

@ orthogonalize the all-electron partial waves |¢;) with respect to the
Hartree-Fock core states: |¢;) — |#}).

@ compute the PAW parameters using |¢;) and Hartree-Fock core

states:

Dy = (6]~ 5+ oklol] + o] + ok [{ou)] + o5 O I6))
(@il — A+ ol [ + oh[Pae] + Tk [0 }15)

and Qi = ($ile)) — (Biles)

The most important step is in this scheme: v} [p2ET] — vl [pHE].
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The HF-PAW method (cont.)

Bulk equilibrium volumes for GaAs and Si

Valence electrons GaAs: Qq (A3)

Valence electrons Si: Qo (A%)
Ga As PAW HF-PAW si PAW HF-PAW
2 1 2 3
43131) 0 4 4524p3 46.06 48.79 33231)2 41.44 41.86
3d Y4s“4p 4s“4p 47.07 47.80 252916352372
60110, .24 1 10, 2, .3 s“2p°3s°3p 41.91 41.93
3p°3d " 4s“4p 3d""4s“4p 47.74 47.80

3s and 3p levels in the spherical Si atom.

3s23p? 2522p535%3p? HF ref.

PAW HF-PAW PAW HF-PAW
3s -15967 -15918 -15.895 -15.908 -15.906
3p  -2.761 -2.756 -2.749 -2.756 -2.760
A -13.205 -13.161 -13.146  -13.151 -13.147

All energies in eV.
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The HF-PAW method (cont.)

The remaining discrepancies are related to the fact that the one-center
expansions of the wave functions inside the PAW spheres are not
complete enough (particularly further away from the nucleus)

#Zaﬁz ) (Biln) #Zdu ) (Piltn)

This causes problems for at least two reasons:

© The core-valence exchange interaction is computed between the
Hartree-Fock core states {¢!F'} and the one-center expansion of 1
only.

@ The point where the Hartree potentials arising from the all-electron
and pseudo ionic cores match moves into regions where the
one-center expansions are not good. This is bound to happen to
some degree since we adjust vL[p25T] — v [pE] and leave

Vi [pze| fixed.
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The HF-PAW method (cont.)

0.12

0.10

[Yn (0)? # 32, (nlBi) (dilr) (x|6;) (Bj|m) 508
~ ~1 0.04

pPFED 0.02

PS (PW)
PS (one-center)
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The HF-PAW method (cont.)
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The HF-PAW method (cont.)
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TAGS and links

INCAR tags

LRHFATM = .TRUE. Changes the DFT AE core charge density (pl) to a Hartree-Fock one.
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Talks and examples

Handson sessions

Handson Session 1
Handson Session 2
Handson Session 3
Handson Session 4

Lectures

| N

SESSION 1: Introduction to Computational Materials Science
SESSION 2:  Introduction to DFT

SESSION 3: Pseudopotentials |

SESSION 4: Pseudopotentials Il

SESSION 5:  Sampling the Brillouin zone
SESSION 6: lonic relaxation methods
SESSION 7: Electronic relaxation methods
SESSION 8: Computational Platforms
SESSION 10: Accuracy and Validation of results
SESSION 11: Pseudopotential Data Base
SESSION 12: DFT in depth

SESSION 13: Unpaired electrons in DFT
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http://cms.mpi.univie.ac.at/vasp-workshop/slides/handsonI.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/handsonII.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/handsonIII.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/handsonIV.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/comput_mat.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/dft_introd.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/pseudopp1.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/pseudopp2.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/k-points.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/optionic.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/optelectron.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/performance.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/accuracy.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/pseudoppdatabase.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/dft_depth.pdf
http://cms.mpi.univie.ac.at/vasp-workshop/slides/magnetism.pdf

Some literature

Hybrid functionals in VASP

“The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis
set”, J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102 (2005).

“Screened hybrid density functionals applied to solids”, J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber,
and J. G. Angyén, J. Chem. Phys. 124, 154709 (2006); Erratum to the previous, J. Chem. Phys. 125, 249901
(2006).

“Why does the B3LYP hybrid functional fail for metals”, J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys.
127, 024103 (2007).

“Hybrid functionals applied to extended systems”, M. Marsman, J. Paier, A. Stroppa, and G. Kresse, J. Phys.:
Condens. Matter 20, 064201 (2008).
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